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A Miscellaneous Tables and Figures

Table 1: Estimated Coefficients: Gender and Age

Parameter Variable Coefficient Std. Error P-Value
1 Male (2008) 0.533 0.123 0.000
Male (2012) 0.690 0.118 0.000
Male (2016) 0.649 0.118 0.000
Male (2020) 0.425 0.114 0.000
Age 18-29 (2008) -0.418 0.075 0.000
Age 18-29 (2012) -0.553 0.078 0.000
Age 18-29 (2016) -0.645 0.082 0.000
Age 18-29 (2020) -0.697 0.081 0.000
Age 65+ (2008) -0.308 0.101 0.002
Age 65+ (2012) -0.456 0.097 0.000
Age 65+ (2016) -0.395 0.093 0.000
Age 65+ (2020) -0.460 0.086 0.000
White (2008) 1.446 0.220 0.000
White (2012) 1.451 0.222 0.000
White (2016) 1.668 0.221 0.000
White (2020) 1.473 0.167 0.000
Black (2008) 0.263 0.223 0.238
Black (2012) 0.252 0.226 0.265
Black (2016) 0.165 0.222 0.456
Black (2020) -0.125 0.168 0.457
Native American (2008) 0.659 0.234 0.005
Native American (2012) 0.701 0.238 0.003
Native American (2016) 0.698 0.231 0.003
Native American (2020) 0.325 0.174 0.063
Asian (2008) 1.144 0.298 0.000
Asian (2012) 1.238 0.300 0.000
Asian (2016) 1.233 0.290 0.000
Asian (2020) 1.160 0.232 0.000

Notes: Coeflicients reflect the estimated contribution of each demographic covariate
to baseline county-level partisan alignment. Variables are expressed as fractions of
county population unless otherwise noted.



Table 2: Estimated Coefficients: Race and Ethnicity

Parameter Variable Coefficient Std. Error P-Value
i Hispanic (2008) 0.734 0.223 0.001
Hispanic (2012) 0.737 0.224 0.001
Hispanic (2016) 0.687 0.220 0.002
Hispanic (2020) 0.507 0.165 0.002
White (2008) 1.446 0.220 0.000
White (2012) 1.451 0.222 0.000
White (2016) 1.668 0.221 0.000
White (2020) 1.473 0.167 0.000
Black (2008) 0.263 0.223 0.238
Black (2012) 0.252 0.226 0.265
Black (2016) 0.165 0.222 0.456
Black (2020) -0.125 0.168 0.457
Native American (2008) 0.659 0.234 0.005
Native American (2012) 0.701 0.238 0.003
Native American (2016) 0.698 0.231 0.003
Native American (2020) 0.325 0.174 0.063
Asian (2008) 1.144 0.298 0.000
Asian (2012) 1.238 0.300 0.000
Asian (2016) 1.233 0.290 0.000
Asian (2020) 1.160 0.232 0.000

Notes: See Table[dl



Table 3: Estimated Coeflicients: Education

Parameter Variable Coefficient Std. Error P-Value
u High School Only (2008)  -0.217 0.092 0.018
High School Only (2012) -0.448 0.099 0.000
High School Only (2016) -0.119 0.102 0.244
High School Only (2020) -0.194 0.100 0.052
Some College (2008) 0.303 0.078 0.000
Some College (2012) 0.087 0.085 0.307
Some College (2016) 0.350 0.088 0.000
Some College (2020) 0.110 0.088 0.209
College Only (2008) 0.220 0.109 0.043
College Only (2012) 0.123 0.108 0.255
College Only (2016) -0.351 0.110 0.001
College Only (2020) -0.679 0.103 0.000
College+ (2008) -1.976 0.153 0.000
College+ (2012) 2,015 0.151 0.000
College+ (2016) 12,253 0.149 0.000
College+ (2020) -2.525 0.133 0.000
Year (2008) 11.233 0.238 0.000
Year (2012) 11.228 0.244 0.000
Year (2016) 1.314 0.244 0.000
Year (2020) L0.674 0.193 0.000

Notes: See Table[dl



B Model Appendix

B.1 Derivation of the Voting Rules

The decision to vote is framed within a standard instrumental voter model. For a given

voter 1, let:
e u;p be the utility if the Republican candidate (R) wins
e u;p be the utility if the Democratic candidate (D) wins
e ¢; > 0 be the private cost of voting (e.g., time, effort).

A voter chooses one of three actions: vote for R, vote for D, or abstain. Without loss of
generality, assume the voter prefers R to D, so u;g > u;p. The choice is therefore between
voting for R and abstaining. The voter participates if the expected utility from voting
exceeds that from abstaining.

If the voter abstains, their expected utility is the probability-weighted average of the two

possible electoral outcomes:
E[U (abstain)] = Pr(R wins|i abstains)u;r + Pr(D wins|i abstains)u;p. (1)
If the voter pays the cost ¢; and votes for R, their expected utility becomes:
E[U(vote R)] = Pr(R wins|i votes R)u;r + Pr(D wins|i votes R)u;p — ¢;. (2)
The individual votes for R if the net benefit is positive:

E[U(vote R)| — E[U (abstain)] > 0. (3)



Note that by definition, the probabilities of winning must sum to one:

Pr(R wins|i abstains) 4+ Pr(D wins|i abstains) = 1

Pr(R wins|i votes R) + Pr(D wins|i votes R) = 1.

Substituting equations and into gives the following condition for participation:

[Pr(R wins|i votes R)u;g + Pr(D wins|i votes R)u;p — ¢]

— [Pr(R wins|i abstains)u,;z + Pr(D wins|i abstains)u;p] > 0

Rearranging terms by candidate utility:

[Pr(R wins|i votes R) — Pr(R wins|i abstains)] u;r

+ [Pr(D wins|i votes R) — Pr(D wins|i abstains)] u;p > ¢;

Let Amg be the change in the probability of R winning due to voter i’s vote. Similarly,

let Amp be the change for D.

Argp = Pr(R wins|i votes R) — Pr(R wins|i abstains)

Arnp = Pr(D wins|i votes R) — Pr(D wins|i abstains)

Since probabilities must sum to one, Pr(R wins) + Pr(D wins) = 1, any increase in one
candidate’s win probability must be matched by an equal decrease in the other’s. Therefore,
Anp = —Amg. This change, Amg, is precisely the probability that voter i’s vote is pivotal

in favor of candidate R. Let’s define Piyotal = ATr.



Substituting back into the inequality, we get the final decision rule:

Pivotal - Wir + (— Ppivotal) - Wip > ¢

Phivotal - (uir — wip) > ¢

This is the canonical result: a voter participates when the probability of being pivotal,
multiplied by the utility difference, exceeds the cost.

To make this framework empirically tractable and behaviorally plausible, the model de-
viates from a literal interpretation of Ppivotal. Instead of assuming voters calculate precise
pivot probabilities (which are vanishingly small in large electorates), I model their subjec-
tive belief in their vote’s importance as a smooth, continuous function of electoral closeness,
denoted p(ks). The utility stakes, w;r — w;p, are captured by the term |Awu;|. This leads

directly to the voting rule used in section 2.1.3 of the main text:

p(Ks) - |Au;| > ¢

B.2 Deriving the Turnout Function

This section derives the county-level turnout rate equations for the Republican and Demo-
cratic candidates (equations (5) and (6)), as presented in the main text.

Consider the post-campaign utility differential for individual ¢ in county j:

min {—m(esp, esr) + Ay, + (., 0}, if Adyy, <0,
Auijs =
max {m(esg, esp) + Adiyj, — (5, 0},  if Adyy, >0,

where the baseline utility differential is

Auijs = ujs — 7’]j5 — 65 — €ijs-
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Republican Turnout

For an R-leaning voter (Aw;;, > 0), turnout occurs if

p(ks) - Augj, > ¢,

Substituting the definition of Aw,;,:

p(ks) - max {m(esgr, €sp) + At;j, — (., 0} > ¢j,.

Note that ¢;, > 0 and p(ks) > 0. The condition max{A,0} > B with B > 0 is equivalent

to A > B. The turnout condition therefore simplifies to

st
p(Ks)

m(esr, esp) + Atlj, — ¢, >

Substituting Aw;;, and rearranging:

C's
€ij, < M(€sr,€sp) + [hj, — ﬁ —Nj, — 0s — Gjy-

Therefore an individual votes for the Republican candidate if this condition holds, and
€ij, < pj, —nj, — 05 (i.e., the individual is R-leaning). This gives us the joint probability of

voting for R:

C
Pr(Vote R) = Pr (Eijs < m(€5R7€5D) + My — p(: ) — Njs — (55 — st, €ijs < Hijs — Njs — 55)

Assume that not all R-leaning voters in a given county turn out. With thousands of

voters per county, this is a mild restriction, and it is verified post-estimation. Under this



assumption, the first condition is the more restrictive one, implying:

m(esr; €sp) — I% — (. <0

Therefore, using the fact that €;;, ~ N(0,1) with CDF H(-), the Republican turnout rate

in county j, is

C.
Oj.R = H(m €sks €sp) + flj, — — — 1, — O —C-s) :
J ( ) ) p(/‘is) J J

Democratic Turnout

For a D-leaning voter (Aw;;, < 0), turnout occurs if
p(ks) |Aug,| > ¢,
Since
Au;j, = min{—m(esp, esr) + At;j, + (., 0} <0,

we have

|Augj,| = max{m(esp, esr) — Atiyj, — Cj,, 0} .

Because ¢;, /p(ks) > 0, the turnout condition is equivalent to

Cjs

p(ks)

m(esp, esr) — Atgj, — (5, >

Substituting Aw;;, = pj, —nj, — 0s — €ij,:

S

p(KJS) : [m(GSD’ GSR) - ILL].S + 77].5 + 55 + 62].5 - Cj.s] > cjs'



Dividing through by p(ks) and rearranging:

Cjs
p('%S)

€ij, > —m(esp, esr) + fj, —Nj, — 0s + (.-

Again, assuming that not all D-leaning voters turn out, we can ignore the redundant
condition €;;, > p;, — 1;, — 05. Because ¢;, ~ N(0,1) with CDF H(-), the probability that

this condition holds is

C.
1— H -2 —m(esp, e, e =0+ Gil )
(p</€8) m(eD e R)+M]s 77]5 +<]s)

Using 1 — H(z) = H(—x), the Democratic turnout rate in county js is:

st

0jsD = H(m(esDa esR) - :u]s - p(/i ) + 77]5 + 58 - C]s) .

B.3 Central Limit Theorem Validation

The candidate’s objective function relies on a normal approximation for the distribution
of total electoral votes. To validate this key simplifying assumption, I conduct a Monte
Carlo simulation for each election cycle. Using the estimated state-win probabilities (7)
from the structural model, I simulate the election outcome 1,000,000 times, generating an
empirical distribution of electoral votes for the Democratic candidate. Figure [1| compares
the histograms of these simulated outcomes against the normal distribution with the implied
mean and variance. The close alignment for each year confirms that the normal approxima-
tion is accurate and robust, providing a solid foundation for the analysis of the candidates’

equilibrium strategies.

10



Validation of Normal Approximation for Electoral Vote Distribution -
'
| m= Simulated EV Distribution | = Simulated EV Distribution
— Normal Approximation PDF | — Normal Approximation PDF
== MeanEV. 8274 | —-= Mean EV. 77.60
0025

Validation of Normal Approximation for Electoral Vote Distribution
'

00175

00150

0020
00125

z
2 00100 o015
8

Density

00075
0010

00050

0005

00025

m 0000

[ 3 o
Total Electoral Votes for Democratic Candidate

3 ® 100
Total Electoral Votes for Democratic Candidate

(a) 2008 Election (b) 2012 Election

Validation of Normal Approximation for Electoral Vote Distribution Validation of Normal Approximation for Electoral Vote Distribution
' v

== Simulated EV Distribution i i == Simulated EV Distribution
— Normal Approximation PDF i i — Normal Approximation PDF
=== Mean EV: 10240 —-= Mean EV. 85.80

0025

0020

0015

Density

Density

0010
0005

o0 o000 0

£y EY 100
Total Electoral Votes for Democratic Candidate

(c) 2016 Election (d) 2020 Election

Figure 1: Validation of the Normal Approximation for the Electoral Vote Distribution.
Each panel shows the histogram of total electoral votes for the Democratic candidate from
1,000,000 simulations, using the estimated model parameters for that election year. The
solid red line is the corresponding Normal PDF, and the dashed black line indicates the
mean of the simulated distribution.

B.4 Accuracy of the County-Shock Approximation

This section quantifies the approximation error from omitting county-level shocks, n;, and
(j,» when computing the probability that the Democrat wins state s. I conduct Ng, = 250
Monte Carlo simulations. In each simulation, I draw Ny, = 10,000 independent realizations
of the shocks to estimate both the full and approximate win probabilities.

Each simulation randomly draws a number of precincts for state s, campaign effort levels
for both parties, and the structural model parameters. Then, for each of the Ny, draws, I

sample:

Njs ~ N(070-]2')7 st ~ N(()’O-gz')’ 65 ~ N(0,0’?),

11



and compute two probabilities:

ﬂ-fgll = Pr [JSD(na C7 6) > O-SR(T/a ga 5)} )

7TaDppr0X = Pr [USD(O7 07 5) > USR(O’ 07 5)] )

where o,p(-) and osg(-) denote the state-level turnout functions for Democrats and Repub-
licans, respectively, defined in Equations (5) and (6). Each probability is estimated as the
fraction of draws in which the Democrat’s simulated vote share exceeds the Republican’s.
Let A; = |7l — 77PP™*| denote the absolute error in simulation . I report the mean
and median absolute error across simulations, along with the standard deviation, minimum,

maximum, and percentiles of the absolute error distribution:

1 Nsim

Mean(A) = N ZAi,
sim i—1

Median(A) = median(Aq,..., Ay, )-

The average absolute error is 0.0099, and the median is 0.0062. Thus, the full and
approximate probabilities differ by less than one percentage point in expectation, and by

just over a half of a percentage point in the median case.

B.5 Numerical Verification of the Uniqueness of O

This section verifies that the threshold value 8, defined in 10 is unique for a broad range of
parameter values and campaign effort proﬁlesE]
Each simulation randomly draws a number of precincts for state s, campaign effort lev-

els for both parties, and the structural model parameters. For each of the Ny, = 1,000

'In principle, two distinct fixed points may exist: an interior solution and a degenerate boundary solution
of the form (z,0,0), where z satisfies |10 under o, p = o5 r = 0. I exclude such degenerate solutions from
the analysis, as they do not correspond to meaningful equilibria.

12
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Monte Carlo simulations, I attempt to solve for (55705’[),0573) from 10, using Ny = 100
independent random initial guesses. The root-finding routine is a damped Newton method
implemented in JAX, with the Jacobian computed via automatic differentiation.

Let 679 = (55, 0s.p,0sr) ") denote the solution in simulation r (out of Ny, ) and trial ¢
(out of Niya). Trials that fail to converge or that return the degenerate boundary solution
(x,0,0) are discarded.

To assess dispersion in solutions across initializations, I compute the coordinate-wise

variance:

Var, (§9) = (Var (60), Vari(o([5)), Vary(o7)),

where Var;(-) denotes variance across trials ¢ within a given simulation r. If multiple fixed
points existed, at least one coordinate of this vector would be strictly positive.

Across the 1,000 simulations, the largest coordinate-wise variance is given in Table

Table 4: Dispersion of (53, 0.0, 0s,r) across Random Initializations

A

55 O0s,D Os,R
max Vary(-) 1.37x1072% 5.05x1072% 5.28x107%2
T
Notes: Values reporf the largest coordinafe-wise variance observed over Vg, = 1,000 simulations and

Niyiar = 100 random starting points per simulation. The vanishing dispersion indicates convergence to a
single fixed point in every replication.

In every simulation, one of three outcomes occurred: (i) convergence to a unique interior
fixed point, (ii) convergence to the boundary solution (x,0,0), or (iii) failure to converge.
Since a valid interior solution was recovered in every parameter draw, and coordinate-wise
dispersion is vanishingly small, I conclude that the solution to 10|is globally unique whenever
an interior solution exists. Hence, the smoothed win probability, 7s(es p,esr) =1 — F (58),

is well defined.
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B.6 State-Level Win Probabilities and Their Derivatives

For each effort profile (esp, esr), the state-level win probabilities 7s(esp, esg) are determined
implicitly from the voter-turnout equilibrium. Specifically, each 7, depends on the value of

~

s+ that equalizes expected Democratic and Republican vote shares within state s:

cj A
0j.p = 0j.r, where o p= w-sH(m(esD,eSR) -y, — ———— 55) ,
’ ’ ’ ; ’ ’ p(0j.p,0j.R)
and o, g is defined analogously. Thus, to calculate the FOC and the Jacobian, we need the

jacobian and hessian of 7s(esp,esg) with respect to effort. Turnout rates are themselves

calculated via Newton’s method applied to the voter-turnout equilibrium within each state:

Fl (37 Ung? Ust>
F(0,04,0,05.r) = | F3(6,0,.p,0.8)

F3(6,04,p,0),r)

- S (18~ s ) o
Js P

0j.D; 0j.R)

C; 2
E w; H(UR—+—5) — OjR
s Js S
— p(05.0,5.R)

(4)

where j; indexes counties with weights w;, in state s, H is a CDF with density h = H’,

and

vﬁ = m(esp, esr) — M., Uﬁ = m(esp, €sr) + 11,

I use p(0j,p,0j,r) instead of p(ks) here to emphasize that the turnout rates o, p and o,
are the objects that enter into the voting efficacy function.
The first equation, F} = 0, ensures that the tie shock ) equalizes expected vote shares,

while F, = 0 and F3 = 0 ensure that the turnout rates o;,p and o, r that enter into the

14
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voting efficacy function p(oj,p, 0, r) are consistent with county-level turnout decisions.

To compute the gradient of 7y efficiently, I apply the implicit function theorem (IFT)
to the system defining the voter-turnout equilibrium, avoiding the need for automatic dif-
ferentiation through nested fixed-point iterations. Within the Jacobian for the candidate
first-order conditions (Eq. , I also require the derivatives of these gradients with respect
to effort, which are obtained by second-order implicit differentiation.

Differentiating this system with respect to the candidates’ efforts and applying the im-

plicit function theorem gives the total derivative:

d(S, UjSDanSR) _ 8F ! GF
)) o

d(esDa esR) 8(5, 04.D;04,R €sD, esR) .

I evaluate this expression numerically by solving the full three-equation system at each
iteration when calculating optimal effort levels. This approach ensures that both the tie
condition and the turnout identities are satisfied when computing gradients of the state-
level win probabilities.

The probability of winning state s is given by
To(espyesr) = 1 — G(0) (5)

where G is the CDF of the state-level shock ds. In other words, for a given 53, if the state-
level shock 0, is greater than 58, then the Democratic candidate wins the state. Combining
this expression with the total derivative of (9, 0;.0,0j,r) With respect to (esp, esr) gives the

gradients of the state-level win probabilities

dob, Ly

~1:_ 53
Ts = —9g( >desD’

where ¢ is the density corresponding to GG, and dgs /desp and dgs /desr are obtained from the

total derivative above.
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Likewise, the second derivatives of the state-level win probabilities with respect to effort

are obtained by differentiating the gradients:

o doy db . d*
~12 _ 55 S S . S .
s g ( )desD desR g destesR

The second derivatives of o, with respect to effort are obtained by using the second-order

IFT on the system in (4)).

B.7 Solving for the Equilibrium Effort Allocations

The equilibrium effort allocations (e, efy) are obtained by jointly solving the first-order
conditions implied by each candidate’s optimization problem, subject to their respective
budget constraints. This ensures that the model’s predicted effort levels are mutually optimal
given expectations about state-level competitiveness and voter responsiveness.

In the following, I deviate slightly from the main text by letting esp and esg denote total
effort in state s (rather than effort per capita); Ts(esD,e.r) CONVerts these to per-capita units
internally. This is purely a notational change. Let BG denote the set of battleground states
and S = |BG]|.

Candidate D chooses effort allocations {e;p},. g to maximize the probability of securing

at least 270 electoral votes:

~S sy “s ls - 270 - EV
max ZSGBGT (¢sp, €s1) (~ D) s.t. Z esp < Bp. (6)
{esp}seBG \/ZseBG 7s(esp, esr)|l — Ts(esp, esr)] 12 ey

16



Likewise, for the Republican candidate:

1 —7ms(esp,esr)|ls — (270 — BV
max @ 2seil ~7T (csp, €sn)] - ( %) s.t. Z esg < Br.  (7)
{esr}sena \/ZSEBG 7TS(@SDv esR)[l - ﬂ-S(eSD7 GSR)] lg s€eBG

These inequalities bind in equilibrium, so I solve the equivalent equality-constrained

problem. Let 7! = 07,/0e,p and 72 = 07;/desr, and for compactness, define

e Fols — (270 = EVp)
\/ZSEBG 7}3(1 - ﬁsﬂg ’

2 sepall = Tslls — (270 — EVg)
VZepe (L= T)E

fD(eD7eR) = fR<eD7eR) -

Then the first-order condition for candidate D in state s is

5 ls7} _ 2iepe Tile — (270 — EVD)F# 127 ] = A
o (ep,er)) [\/ZteBG (=7 2[Y e pe (1 — 727 ° s( s) D(>8)

where Ap is the Lagrange multiplier on the budget constraint and ¢(+) is the standard normal

density. An analogous condition holds for candidate R:

R ep. en _lsﬁ-? . ZteBG(l — )l — (270 — EVg) 1272(1 — 27 ] = \p
¢(f ( , )) [\/ZteBG ﬁt(l - ﬁt)lg Z[ZteBG 7~Tt(1 - ﬁt)l?]gﬂ S 8< S) (9)

The system in f@ is solved using a hybrid root-finder: a Newton—Raphson step is
first attempted; if the residual norm does not contract or yields negative effort levels, the
algorithm switches to a damped Newton (Levenberg—Marquardt) update in log-space, where
Zs4 = loges, ensures e; , > 0 by construction.

The first-order conditions can be written succinctly as

ofP

= R off
gb(f (eD7eR)) 86 b = /\D; gb(f (eD7eR)) —

8683

AR

Newton’s method and Levenberg—Marquardt attempt to find the root of the stacked

17



system:

S(fP) 2L — Ap

8€1D

S(fP) 2L — Ap

desp

o = A | _ o

S(fH I — Ag

> senc €sp — Bp

_ZsEBG €srR — BR_

The first S equations correspond to the Democratic candidate’s FOCs, and the next S
to the Republican candidate’s, followed by two budget equalities.

To simplify the problem, I subtract each element of the candidate’s FOC system by the
next one, yielding |BG| — 1 equations per candidate that do not depend on the Lagrange
multipliers. The last two equations are the budget constraints, which do depend on the
multipliers. This also allows me to divide out the ¢(f?) and ¢(fF) from each row. This

transformation improves numerical stability and speeds convergence. The system is now:

ofP . ofp
de1p Oeap
ofP  _ afP
Oes—1yp  Oesp
off  afR
deir Oear - 0.
off . ofR
Oes—1y)r  Oesr
> senG €sp — Bp
ZSEBG €srR — BR

This yields a square system of dimension 2.5, with one equation per unknown effort level.

18



Let,

ofP ofP ofF offt

D R
gs = - y g = - . hp=Y_ ep—Bp, hrp= Y ex—Bn
desp 86(3+1)D Oesr ae(s+1)R sCBC sCBC
The Jacobian of the 25 equations with respect to the 25 unknowns is
[ JgP 990’ | 997 997 ]
deip desp | Oeir desr
8939)—1 a9?—1 8gSD—1 a95—1
deip desp | Oeir desr
dgit dgi" | g7 gt
J(ep,eg) = | 9deip desp | Oeip desr (10)
395_1 ag?—l a9?—1 agg—l
deip desp | Oeir desr
1 1 0 0
0 0 1 1

which is a 25x 25 matrix. In the next section , [ describe how to compute the derivatives

of the state-level win probabilities that enter into these expressions.

C Identification Appendix

C.1

Identification via Monte Carlo Simulation

For the first validation exercise, I use the observed county- and state-level covariates from
the empirical application, (X J"‘ ,X]i), to generate R = 100 synthetic elections. In each

replication, I draw a fresh vector of coefficients

(ﬂlm Bcv Boq ) /Baza 66” 6777 65)7
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compute equilibrium campaign efforts (egfl)), egl)%), draw county- and state-level shocks, and

simulate turnout. I then re-estimate the model on each simulated dataset using the same
likelihood function and optimization routine as in the baseline estimation. To economize
on computation time, I use a reduced covariate set and fix v = 2 and ¥ = 0. Replications
that fail to converge or do not yield an equilibrium profile are excluded, as this issue does
not arise in the empirical application. Table |5 reports the results. Mean estimation errors
are centered at zero, indicating unbiasedness, and mean squared errors are small, indicating

high precision. This confirms that the structural parameters can be reliably recovered.
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Table 5: Parameter-recovery diagnostics across Monte-Carlo replications

Parameter MSE RMSE  25th pctl  75th pctl

Male (18-29) 1.89 x 107*  0.0138  —0.0078 0.0077
Female (65-79)  5.11 x 107* 0.0226  —0.0127 0.0147

White 2,12 x 107°  0.0046  —0.0029 0.0021
Black 2.92 x 107  0.0054  —0.0041 0.0028
Hispanic 2.37 x 107°  0.0049  —0.0026 0.0028

High school only 1.04 x 107*  0.0102  —0.0052 0.0063
Some college 5.19 x 107°  0.0072  —0.0022 0.0060
College only 1.54 x 107  0.0124  —0.0063 0.0078
Employed 8.91 x 107% 0.0030  —0.0013 0.0019
Voter ID Index  8.02 x 10~7 0.00090 —0.00041  0.00049
Cost constant 3.54 x 107% 0.00188 —0.00103  0.00085

o 259 x 1072 0.1609  —0.0265 0.0204
Qo 2.46 x 1071 0.4956  —0.0581 0.0863
0 5.06 x 107> 0.0071  —0.0040 0.0037
Oc 5.92 x 107 0.0077  0.00033 0.0080
Os 6.96 x 1072 0.0834  —0.0259 0.0623

Notes: MSE is the mean squared estimation error across Monte-Carlo replications, and RMSE is
its square root. The final two columns report the 25th and 75th percentiles of the estimation error
distribution for each parameter.

C.2 Identification on estimated coefficients

To assess local identification and numerical stability, I conduct a likelihood sensitivity anal-
ysis around the estimated parameter vector B For each element i, I generate a grid of
values in a neighborhood around Bk, holding all other elements fixed. At each grid point, I

re-evaluate the full-sample log-likelihood function and its gradient.
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Formally, let /5’ € RX denote the estimated parameter vector, and fix a grid of shocks
{6,,}M_,. For each index k = 1,..., K, I define a perturbed parameter vector 3%™ such

that

g =

Bj , otherwise.

For each perturbed vector, I compute the log-likelihood ¢(3 (k’m)) and record the results.
This procedure yields a series of univariate likelihood profiles centered at Bk, which allow
visual inspection of local curvature and potential flat regions in the likelihood surface. In
practice, I fix d,,, to be between -1 and 1, with a total of 20 grid points for each fj.

Figures - [5] plot these likelihood profiles for each (.. The results show that the
likelihood is locally well-behaved and concave in the neighborhood of each coefficient. No
flat regions or multimodalities are detected, providing reassurance that the likelihood-based
estimator is locally identified and numerically stable. The only exception are the «; and
the ay, parameters, which govern the perceived efficacy function. These parameters exhibit
a flatter likelihood profile. However, the likelihood still exhibits a midpoint around the true
value, suggesting that the model is still locally identified, albeit with less precision for these

parameters.

D Data Appendix

D.1 Polling-place congestion

I proxy queues at the polls with a crowding index that scales the voting-age population by
the number of in-person polling locations on Election Day. Let PPj; denote the number

of polling places and VAP, the voting-age population in county j during election year ¢,
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Figure 2: Log-likelihood profiles around each (5 (Graph 1)
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Log-likelihood evaluated around each [, by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 3: Log-likelihood profiles around each S (Graph 2)
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Log-likelihood evaluated around each [, by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 4: Log-likelihood profiles around each S5 (Graph 3)
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Log-likelihood evaluated around each [, by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 5: Log-likelihood profiles around each [y
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Log-likelihood evaluated around each B by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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defined as the number of residents aged 18 and older. The congestion index is defined as

VAP,
Congest;, = log| — SN
PPj,

where ]gj)jt is the observed number of polling sites, or a predicted value when the data is
missing.

Approximately 19% of county-election observations are missing polling place data. I im-
pute these missing values using a Gradient Boosting model trained on county-year covariates,
including a linear time trend, log voting-age population, demographic shares (age, gender,
race, education, employment), and state fixed effects. I first log-transform the number of
polling places to reduce skewness and ensure positive predictions. Model hyperparameters
are selected via five-fold cross-validated grid search over tree depth, regularization, learning
rate, and number of iterations. The model is trained on observed data from the 2008-2020

cycles. The final model achieves an out-of-sample R? = (0.838.
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D.2 Summary statistics

Table 6: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Battle-
ground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max
Male 3,174 0.501 0.026 0.374 0.488 0.496 0.505 0.790
Age 18-29 3,174 0.147 0.047 0.034 0.123 0.137 0.156 0.591
Age 65+ 3,174 0.162 0.044 0.028 0.134 0.159 0.185 0.514
White 3,174 0.789 0.176 0.086 0.680 0.852 0.932 0.998
Black 3,174  0.103 0.143 0.000 0.008 0.033 0.145 0.791
Native American 3,174 0.008 0.037 0.000 0.001 0.002 0.004 0.796
Asian 3,174  0.013 0.018 0.000 0.003 0.006 0.014 0.189
Hispanic 3,174 0.066 0.082 0.000 0.019 0.039 0.078 0.831
High School Only 3,174  0.352 0.077 0.055 0.304 0.354 0.405 0.556
Some College 3,174 0.297 0.048 0.114 0.265 0.300 0.330 0.455
College Only 3,174 0.142 0.059 0.030 0.098 0.130 0.170 0.480
College+ 3,174 0.077 0.046 0.007 0.047 0.064 0.094 0.437

Notes: All variables are expressed as population shares unless otherwise noted. Statis-
tics are based on county-level data from battleground states where effort is endoge-
nously allocated in equilibrium.
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Table 7: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Non-
Battleground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max
Male 9,322 0.501 0.023 0.405 0.489 0.497 0.507 0.764
Age 18-29 9,322 0.147 0.041 0.031 0.125 0.141 0.159 0.554
Age 65+ 9,322  0.157 0.041 0.031 0.129 0.1564 0.181 0.402
White 9,322 0.763 0.207 0.007 0.647 0.839 0.927 1.000
Black 9,322 0.084 0.144 0.000 0.005 0.018 0.085 0.874
Native American 9,322 0.021 0.081 0.000 0.001 0.003 0.007 0.910
Asian 9,322  0.013 0.030 0.000 0.002 0.005 0.011 0.522
Hispanic 9,322  0.097 0.148 0.000 0.020 0.038 0.098 0.991
High School Only 9,322 0.345 0.070 0.071 0.300 0.349 0.396 0.557
Some College 9,322 0.301 0.055 0.111 0.265 0.301 0.338 0.506
College Only 9,322  0.136 0.055 0.019 0.095 0.126 0.166 0.457
College+ 9,322 0.072 0.042 0.000 0.045 0.060 0.086 0.483

Notes: All variables are expressed as fractions of county population unless otherwise
noted. Observations cover counties in non-battleground states where campaign effort
is set to zero in equilibrium.
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Table 8: Summary Statistics for Cost of Voting Index by Urban/Rural Status and State
Type

Urban Counties Rural Counties

Statistic BG Non-BG BG Non-BG

Count 231 375 2880 8324
Mean 0.584 0.593  0.540  0.521
Std. Dev. 0.042  0.050  0.054  0.064
Min 0.471  0.491  0.334  0.000
25th Pctl  0.559  0.563  0.505  0.482
Median 0.590  0.587  0.536  0.519
75th Pctl  0.609  0.613  0.570  0.558
Max 0.760 0976  0.887  1.000

Notes: The cost of voting index reflects percentile-
transformed congestion measures interacted with ur-
ban status. Urban counties are defined as those with
more than 350 residents per square kilometer. BG =
Battleground states (receive campaign effort); Non-
BG = Non-battleground states (no campaign effort).
All statistics are computed at the county-election
level. Values are at the county-election level.
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Table 9: Summary Statistics for Election-Law Indices by State Type

Voter ID Index

Poll Hours Index

Reg. Deadline Index

Statistic BG Non-BG BG Non-BG BG Non-BG
Count 40 160 40 160 40 160
Mean 0.300  0.273  0.377 0.380 0.519 0.563
Std. Dev. 0.345 0.317  0.142 0.207 0.463 0.406
Min 0.000  0.000  0.000 0.000 0.000 0.000
25th Pctl  0.000  0.000  0.333 0.333 0.000 0.000
Median 0.250  0.250  0.333 0.417 0.717 0.700
75th Pctl 0.500  0.500  0.500 0.500 0.967 0.967
Max 1.000 1.000  0.667 1.000 1.000 1.000

Notes: All indices are scaled to the unit interval. Higher values reflect

more restrictive voting policies.

BG = Battleground states (receive

campaign effort); Non-BG = Non-battleground states (no campaign
effort). Values is at the state-year level.
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Table 10: Summary Statistics for Cost of Voting Covariates by State Type

Fraction Employed

Statistic BG Non-BG

Count 3,174 9,059
Mean 0.598 0.589
Std. Dev. 0.080 0.079
Min 0.136 0.000
25th Pctl  0.551 0.541
Median 0.606 0.597
75th Pctl  0.654 0.645
Max 0.855 0.831

Notes: Variable normalized to
the unit interval using empir-
ical percentiles. BG = Bat-
tleground states (receive cam-
paign effort); Non-BG = Non-
battleground states (no cam-
paign effort).  Statistics are
based on county-election level
observations.

D.3 Battleground state classification

To illustrate the sharp concentration of campaign resources, Figure [f] plots the marginal
increase in total advertising expenditures from adding each successive state to the battle-
ground set, ranked in descending order of combined Democratic and Republican spending
between August 1 and Election Day. Across all years, the first few states produce large
jumps in total spending, but the marginal gain falls rapidly. By the tenth state, additional
states contribute negligibly to overall expenditures, confirming that campaign activity is

overwhelmingly focused on a small set of states.
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Figure 6: Percent Increase from Adding States to the Battleground Classification

Percent Increase in Total Effort by Year

£ 1001

= — 2008

w

= 801 2012

-

e — 2016

£ 60 — 2020

[}

[}

O 401

o

o

= 204

c

[}

u

o 01

[a T T T T T T
0 10 20 30 40 50

Number of States
Notes: Each curve shows the percent increase in total advertising expenditures from adding
the next state to the battleground set, with states ranked in descending order of combined
Democratic and Republican television spending between August 1 and Election Day. Data
are from the Wesleyan Media Project for the 2008, 2012, 2016, and 2020 presidential elec-

tions.

Tables [11] and [12] summarize the distribution of observed television advertising expendi-
tures across states. In each election year, the top ten states account for more than 86% of
total spending, with this share rising to 92% in 2020. This sharp concentration motivates
the definition of battleground states used in the model.

Among the remaining 40 states, most receive negligible effort: the median share is effec-
tively zero in every year, and even the 75th percentile remains well below 1% in all cycles.
These patterns support the assumption that campaign effort is zero in non-battleground
states. While this imposes a discrete cutoff, it closely mirrors the observed data and sub-
stantially simplifies the model’s strategic problem without distorting the distribution of

effort.
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Table 11: Summary Statistics for Share of Total Effort in Non-Battleground States

Statistic 2008 2012 2016 2020

Mean 0.0045 0.0036 0.0029 0.0022
Std. Dev. 0.0110 0.0060 0.0053 0.0041
Min 0.0000 0.0000 0.0000 0.0000

25th pet.  0.0000 0.0000 0.0001 0.0000
Median 0.0000 0.0000 0.0002 0.0000
75th pet.  0.0010 0.0071 0.0030 0.0022
Max 0.0448 0.0196 0.0221 0.0163

Table 12: Share of Total Campaign Effort in Top 10 Battleground States

Year 2008 2012 2016 2020
Share 0.830 0.862 0.862 0.924

D.4 Constructing Campaign Budget Shares and Total Effort

D.5 Data Sources

Campaign—finance information comes from two datasets:

o Television advertising. Gross state-level outlays on presidential television ads are pro-
vided by the Wesleyan Media Project. These figures form the variable TV, discussed

in Section 4.4.

e Operating expenditures. Itemized operating-expenditure files released by the Federal
Election Commission (FEC) record every payment made by candidate committees,

including transaction date, amount, and free-text purpose description.

D.6 Filtering Operating Expenditures

The raw FEC files contain many transactions unrelated to voter mobilization. The following

rules are applied to retain only plausible mobilization outlays:

1. General-election focus: Keep entries tagged as general or general-primary spending.
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2. Candidate committees: Restrict to disbursements by the principal presidential com-

mittees of each major party.

3. Purpose description cleaning: Convert purpose strings to lower-case and harmonize

common variants (e.g. “on-line” — “online”).

4. Positive keyword match: Retain only transactions whose purpose description matches
one of the five predefined mobilization categories (media, online, print, telemarketing,

travel) based on regular expressions.

D.7 Classifying Mobilization Channels

Every retained transaction is assigned to one of five mutually exclusive mobilization cate-

gories using keyword patterns:

Category Matched keywords in purpose description
media media, tv, broadcast
online online, digital, facebook, google, youtube, twitter,

instagram, snapchat, web, internet
print print, post, mail, leaflet
telemarketing telemarketing, phone, text, sms

travel travel, event, rally, airfare, hotel

Ambiguous strings are resolved by a priority order media > online > print > telemarketing >

travel, ensuring each transaction appears exactly once.
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E Results Appendix

E.1 Calculating Elasticity of Turnout with Respect to Campaign

Effort

To quantify marginal responsiveness, I exploit the equilibrium conditions for county-level
turnout, defined in equations (5) and (6). In equilibrium, the following system must be

satisfied for each county j, in state s and each party p € {D, R}:

C.

Fj. ple,a)=o0j,p— H(m(es,D, s,R) — Ij, — ﬁ + My, + 05 — st) =0, (11)
C.

Fj r(e,0) =0, r— H(m(es,m es,p) + I, — p(: - Mj. — 0s — st> =0, (12)

where

Oup= 3 W05 Ps) = p(0sp,0ur).
jser

Stacking equations and over all counties in a given state yields the vector-valued

function F(e,o) € R*’I. The Jacobians dF/do and OF/de enter the implicit function

0o __(or\" (oF
de Jo Oe )’

which is used to compute marginal turnout responses to changes in campaign effort.

theorem:

From these derivatives, I compute county-level elasticities of the form

90j, p €s,q
€joprg = — 1, ,q €1D, R},
Js:psq (3€s,q i pq e }
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F Validating the Effects of Competitiveness using a

Border Discontinuity Design

F.1 Balance Tests and Covariate Adjustment

Before estimating the main regression, I test whether counties on opposite sides of a state
border that share a media market differ systematically in observable characteristics. For

each of fourteen covariates X, I estimate a regression of the form:
Xept = B - HighComp,,; + dps + €cpr (13)

The indicator HighComp,, equals one if county c lies on the more competitive side of its
border pair p in year t. All specifications include border-pair year fixed effects d,;. Standard
errors are clustered at the county level.

Across the covariates tested, which include demographics, educational attainment, in-
come, and employment status, only one shows statistically significant differences at conven-
tional levels, the share of Hispanic residents is higher in competitive counties (0.6 percentage
points, p < 0.01). While statistically significant, this difference is small in magnitude. As a
robustness check, I separately run the main regression including this covariate, along with
the full set of covariates used in the balance tests.

Results using pre-election polling averages instead of realized vote shares similarly demon-
strate no significant differences in covariates across border counties, with the exception of

fraction of residents employed.
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Table 13: Covariate Balance Across Border Counties

Realized Vote Shares Pre-Election Polls

Covariate Estimate  Std. Error  Estimate Std. Error
Male 0.001 (0.001) 0.001  (0.001)
Age 18-29 —0.001 (0.001) —0.001 (0.001)
Age 65+ 0.001 (0.001) 0.002  (0.001)
White 0.002 (0.005) 0.006  (0.004)
Black —0.003 (0.003) —0.004 (0.003)
American Indian/Alaska Native ~ —0.003 (0.003) —0.004 (0.003)
Asian 0.001 (0.001) 0.001 (0.001)
Hispanic 0.006** (0.002) 0.003  (0.002)
High School Only 0.001 (0.002) 0.004 (0.002)
Some College 0.002 (0.002) 0.001 (0.002)
College Only 0.001 (0.002) 0.000  (0.002)
College+ —0.001 (0.001) —0.001 (0.001)
Log Median Income 0.012 (0.008) 0.011 (0.007)
Employed 0.004 (0.002) 0.004* (0.002)
Observations 8,126 | 8,032

Notes: Each row reports the coefficient from a separate regression of the specified covariate on an
indicator for high competitiveness. All regressions include border-pair-by-year fixed effects. Co-
variates represent shares unless otherwise noted. Standard errors (in parentheses) are clustered by
county. Significance levels: * p<0.05, **p<0.01, ***p<0.001.

F.2 Results

Table [14] reports the main regression-discontinuity estimates. Column (1) presents the base-
line specification without covariates. Column (2) adds Hispanic population share, the only
variable flagged as imbalanced in the balance tests. Column (3) includes the full set of
demographic and economic controls. Standard errors (clustered by county-pair) appear in
parentheses. Across specifications, the estimated coefficients range from 0.054 to 0.064, and
are statistically significant at the p < 0.001 level.

I additionally test whether results are sensitive to the measurement of competitiveness.
Instead of realized vote shares, Appendix uses pre-election polling to construct kg. Al-
though the estimated coefficients are smaller (0.029-0.030), they remain positive and highly

significant, reinforcing that the turnout response is not an artifact of post-treatment mea-
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sures of closeness.

Table 14: Effect of Competitiveness on Turnout

(1) (2) (3)

Compoetitiveness Estimate 0.054*** 0.059*** 0.064™**
(Std. Error)  (0.007) (0.007) (0.007)
Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 8,126 8,126 8,126
R%. 0.003 0.156 0.534

Notes: Each column reports regression estimates of the effect of state-level competi-
tiveness on turnout, measured at the county-border pair-year level. All models include
border-pair-by-year fixed effects and state fixed effects. Columns (2) and (3) sequen-
tially add controls for covariates flagged as imbalanced in the balance tests and the full
set of demographic and economic covariates. Standard errors (in parentheses) are clus-
tered at the county-pair level. Significance levels: * p<0.05, **p<0.01, ***p<0.001.

Table 15: Estimated Turnout Effect of Moving from Average Non-
Battleground Competitiveness to Full Competitiveness

No Controls Balance Sig. Controls All Controls
Effect (pp) 1.67 1.82 1.98

Notes: Each entry reports the estimated increase in turnout (in percent-
age points) associated with raising competitiveness from the non-battleground
state mean (kg = 0.694) to full competitiveness (ks = 1), based on the coef-
ficients in Table [14]

To ensure the results of the border discontinuity are not driven by idiosyncrasies of
the data, I conduct a complementary robustness check replicating the analysis of Spenkuch
and Toniatti (2018)). Their approach compares counties on opposite sides of a media market
boundary but within the same state, thereby holding competitiveness constant while allowing
television advertising exposure to vary. I recover similar estimates: campaign advertising has
no discernible effect on turnout, while differences in partisan spending meaningfully affect
vote shares. The close replication of their findings indicates that the turnout effects in my

main design are not artifacts of sample selection or measurement, but reflect genuine effects

of electoral competitiveness. See Appendix for details.
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F.3 Robustness to Field Offices and Events

A potential concern with the border discontinuity design is that shared media markets may
not fully equalize campaign exposure. In particular, ground operations such as field offices,
canvassing hubs, or campaign events may vary discontinuously at state lines. To evaluate
this concern, I construct a county-level dataset of field office and event activity from the 2008
to 2020 presidential elections, using disbursement records from the Federal Election Commis-
sion (FEC), available at https://www.fec.gov/data/browse-data/?tab=bulk-data. The
data include transaction-level operating expenditures by presidential candidates’ authorized
committees.

I restrict attention to disbursements classified as rent, lease, or event-related, and exclude
entries referring to equipment, services, or transportation using a set of keyword-based filters
(for example, “car rental” or “audio/video”). Each transaction is mapped to a county using
a ZIP-to-county crosswalk. If a ZIP code spans multiple counties, I conservatively assign the
spending to all relevant counties.

The final dataset defines a binary indicator for whether any field office or event activity
occurred in a given county-year. A balance test analogous to Appendix shows that more
competitive counties are approximately five percentage points more likely to exhibit such
activity, a difference that is statistically significant at the p < 0.001 level.

To assess the impact of this potential confound, I re-estimate the main regression af-
ter excluding any county pair where either county recorded ground activity. This removes
approximately 1,000 county-border pair-year observations. As shown in Table the esti-
mated effect of competitiveness on turnout remains highly stable, with coefficients ranging
from 0.053 to 0.067 depending on the specification. These results suggest that the main

estimates are not driven by differences in ground operations across state lines.
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Table 16: Effect of Competitiveness on Turnout (No-Office Sample Only)

(1) (2) (3)

Estimate 0.053*** 0.057*** 0.067**
Competitiveness

(Std. Error) (0.011) (0.011) (0.010)
Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 7,056 7,056 7,056
R% i 0.003 0.152 0.531

Notes: Each column reports regression estimates of the effect of state-level competi-
tiveness on turnout, restricted to counties with no observed field offices or campaign
events. All models include border-pair-by-year fixed effects and state fixed effects.
Columns (2) and (3) sequentially add controls for covariates flagged as imbalanced
in the balance tests and the full set of demographic and economic covariates. Stan-
dard errors (in parentheses) are clustered at the county-pair level. Significance levels:

*p<0.05, **p<0.01, ***p<0.001.

F.4 Digital Campaign Spending and Turnout

To further validate the model’s predictions, I examine the relationship between state-level
competitiveness, digital campaign spending, and turnout. I construct a state-level dataset
of digital advertising expenditures for the 2020 election using records from the Center for
Responsive Politics (OpenSecrets.org). I focus on the four largest general-election commit-
tees: Trump Make America Great Again Committee, Donald J. Trump for President, Biden
for President, and the Biden Victory Fund. The first two are Republican committees, while
the latter two are Democratic. I extract state-level totals of digital advertising from their

public dashboards, merge the totals to obtain party-level spending, and compute per-capita

values by dividing state totals by the voting-age population.
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I then re-estimate the border discontinuity design described in equation 19, including per-
capita digital spending as an additional regressor. The results, reported in Table [17], show
that competitiveness remains a positive and statistically significant determinant of turnout
even after controlling for digital spending.

Because digital advertising was minimal in earlier elections, I replicate the analysis using
data from the 2008 and 2012 presidential contests. This limits the possibility that the
estimated effect of competitiveness is driven by variation in digital spending. The results,

reported in Table [18] yield coefficients nearly identical to the baseline estimates.

Table 17: Effect of Competitiveness and Digital Spending on Turnout

(1) (2) 3) (4)

Estimate 0.153**  0.141*** 0.171* 0.133*
Competitiveness

(Std. Error) (0.013)  (0.019) (0.018) (0.014)

Estimate 0.006 —0.002 0.003
Digital Spending (per capita)

(Std. Error) (0.006) (0.005) (0.004)
Controls No No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes Yes
State FE No No No No
Observations 2,044 2,044 2,044 2,044
RZ..0 0.111 0.112 0.229 0.581

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout, with
and without controls for per-capita digital advertising spending. All specifications include border-pair-by-year
and state fixed effects. Columns (3) and (4) add covariates flagged as imbalanced in the balance tests and the
full set of demographic and economic controls, respectively. Standard errors (in parentheses) are clustered at the

county-pair level. Significance levels: * p<0.05, **p<0.01, ***p<0.001.
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Table 18: Effect of Competitiveness on Turnout (2008-2012 Elections)

(1) (2) (3)

Estimate 0.058*** 0.061*** 0.063***
Competitiveness

(Std. Error) (0.009) (0.009) (0.010)
Controls No Controls Balance Sig. Controls All Controls
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 4,088 4,088 4,088
R%.. 0.002 0.144 0.536

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout
in the 2008 and 2012 elections. All specifications include border-pair-by-year and state fixed effects.
Column (2) adds Hispanic population share, the only covariate flagged as imbalanced in balance
tests. Column (3) includes the full set of demographic and economic controls. Standard errors
(in parentheses) are clustered at the county-pair level. Significance levels: *p<0.05, **p<0.01,

4 p<0.001.

F.5 Validation with Pre-Election Polling

To match with the model as closely as possible, the main regression uses realized vote shares
to measure competitiveness. However, this approach may be subject to endogeneity concerns,
as the same factors that drive turnout may also influence vote shares. To address this, I
conduct a robustness check using pre-election polling data to measure competitiveness. I
obtain state-level pre-election polling data from the Fivethirtyeight GitHub repository, which
compiles polling averages from various sources and adjusts them for pollster quality, sample
type, and recency. They give a predicted two-party vote share for each state in each election
year over the election cycle throughout the 2008-2020 period. Polling data are unavailable
for Delaware, Mississippi, and Wyoming in 2012. I use the final pre-election polling average
available before Election Day for each state-year.

Similarly to the main regression, I define competitiveness as the ratio of the expected

Democratic vote share to the expected Republican vote share in each state-year. The results
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using pre-election polling data are reported in Table[I9] While the overall effect is smaller, the
estimated effect of competitiveness on turnout remains positive and statistically significant,
with coefficients ranging from 0.027 to 0.030 depending on the specification. This translates
to an increase in turnout of approximately 0.88 to 0.98 percentage points when moving from
the non-battleground state mean (kg = 0.677) to full competitiveness (ks = 1), as shown
in Table 20

Although these estimates are lower than those from the main specification (1.72 to 2.17
percentage points) and the model’s predicted effect (1.81 points), they remain directionally
consistent and statistically robust. The smaller magnitudes may reflect greater noise in
polling-based measures of competitiveness, which are based on expectations rather than
realized outcomes.

Table 19: Effect of Competitiveness on Turnout (Pre-Election Polls)

(1) (2) (3)

Estimate 0.029** 0.027** 0.030***
Competitiveness

(Std. Error) (0.010) (0.010) (0.009)
Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 8,032 8,032 8,032
R2 . 0.001 0.007 0.540

Notes: Each column reports regression estimates of the effect of state-level compet-
itiveness (measured using pre-election polling averages) on turnout, at the county-
border pair-year level. All models include border-pair-by-year fixed effects and state
fixed effects. Columns (2) and (3) sequentially add controls for covariates flagged
as imbalanced in the balance tests and the full set of demographic and economic
covariates. Standard errors (in parentheses) are clustered at the county-pair level.

Significance levels: * p<0.05, **p<0.01, ***p<0.001.

44



Table 20: Estimated Turnout Effect of Moving from Average
Non-Battleground Competitiveness to Full Competitiveness (Pre-
Election Polls)

No Controls Balance Sig. Controls All Controls

Effect (pp) 0.93 0.88 0.98

Notes: Each entry reports the estimated increase in turnout (in percent-
age points) associated with raising competitiveness from the non-battleground
state mean (ks = 0.677) to full competitiveness (ks = 1), based on the pre-

election polling estimates in Table

F.6 Replicating Spenkuch and Toniatti (2018)

I replicate the design of Spenkuch and Toniatti (2018), which compares counties on opposite
sides of media market boundaries but within the same state. This holds competitiveness
fixed while allowing campaign exposure to vary.

Consistent with their findings, I find that per-capita campaign spending has no effect on
turnout. However, when I regress the difference in per-capita spending between Democratic
and Republican campaigns on the corresponding difference in vote shares, the estimated
effect is large, positive, and statistically significant.

This closely mirrors the core result of Spenkuch and Toniatti (2018)), who find that
campaign advertising persuades but does not mobilize. The fact that I recover similar
estimates using their design suggests that the strong turnout effects in my main analysis

reflect differences in research design rather than differences in data.

G Marginal Cost Derivation

Total votes for party ¢ in state s are given by:

‘/;7(1 = ZVAPJS ’ O-jS#Z’

j5€s
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Table 21: Reduced-Form Effects of Campaign Spending

Panel A: Turnout

(1) (2) (3)

Total Spending Estimate 0.001 0.000 0.000
(Std. Error) (0.001) (0.001) (0.000)
Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R% 0.000 0.080 0.594

Panel B: Vote Share Difference
(1) (2) (3)

Spending Difference Estimate 0.018* 0.015** 0.010***
(Std. Error)  (0.005) (0.004) (0.003)
Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R%... 0.004 0.181 0.645

Notes: Panel A regresses county-level turnout on total per-capita campaign spending.
Panel B regresses the difference in Democratic and Republican vote shares on the difference
in per-capita campaign spending. All models include either border-pair or border-pair-by-
year fixed effects. Columns (2) include only covariates flagged as imbalanced in balance
tests. Columns (3) include the full set of demographic and economic controls. Standard
errors (in parentheses) are clustered by county. Significance levels: * p<0.05, **p<0.01,
**p<0.001.

where VAP is the voting-age population in county js, and o, , is the party-specific turnout

share. Differentiating yields:

and thus:
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H Computational Strategy for the Popular Vote

The primary source of computational complexity in the national popular vote simulation is
the cross-state dependency created by the national efficacy term p(op,og). In the baseline
model, state-level win probabilities could be calculated independently conditional on effort.
This meant I could approximate the total number of electoral votes using a normal distri-
bution. Now, however, a shock d5 in one state affects turnout in all other states by altering
the national vote totals and, consequently, the perceived efficacy of voting.

To calculate the optimal campaign strategies under this new scenario, I employ a Monte
Carlo simulation approach to approximate the probability of winning the national popular
vote. For a given effort allocation (ep,er), I draw M vectors of state-level shocks {ds}ses-
Given there are 50 states, I draw 50 state-level shocks for each m € M vector.

I calculate the optimal campaign strategies in two steps. First, I use a gradient-based
optimizer to find an approximate equilibrium. Then, I refine this solution using an iterative
best-response (IBR) procedure. In both cases, I use a gradient-based optimization method
(the Adam optimizer) to find the optimal effort allocations for each candidate. However,
the Monte Carlo procedure yields a discontinuous and non-differentiable objective function,
preventing the use of standard gradient-based optimization methods. To address this, I
approximate the indicator function for winning with a logistic sigmoid function, creating a

“soft win” objective:

1
1 4 exp(—k - margin™)

Whp(ep,er)

HMS

m) _ _(m) (m) .

where margin™ = op —o0p  is the national popular vote share margin in simulation draw

m, and oi™

is the total national vote share for party p given the m-th vector of state-level
shocks. This objective function is smooth, allowing for the computation of exact gradients
via automatic differentiation.

In the first step, I use the Adam optimizer to perform simultaneous gradient updates
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to find an approximate equilibrium. This phase incorporates an annealing schedule for the
sigmoid’s steepness parameter, k, which is incrementally increased from k = 10 to £ = 25,
and finally to & = 50. In practice, this means the objective function starts as a smooth
approximation of the win probability and becomes increasingly sharp, approaching the true
indicator function as k increases. During this phase, I calculate the gradient estimates
using a mini-batch approach, using only 50 simulation draws per gradient evaluation, while
using M = 1000 draws to evaluate the objective function itself. This technique balances
computational efficiency with the need for accurate gradient estimates.

In the second step, I refine the initial solution using an iterative best-response (IBR)
procedure with k fixed at 50 and use all M draws to calculate the gradient. However, given
the higher number of draws used for the gradient, I limit M = 500. In each step of the
IBR procedure, one candidate’s strategy is held fixed while the other’s optimal response is
found using the Adam optimizer. To enhance stability, the IBR updates are damped using
a mixing parameter, such that the strategy for the next iteration is a weighted average of
the current strategy and the newly computed best response.

Figure [7] visualizes the convergence of this algorithm for each party in each election cycle.
Each plot shows the infinity norm of the difference between a campaign’s effort allocation
vector across successive iterations, with the y-axis on a logarithmic scale to better visualize
the approach to zero. The left panel of each plot shows the Warmup Phase using the
simultaneous gradient-based optimizer with annealing, while the right panel displays the
subsequent Iterative Best Response (IBR) Phase. For each election year (2008, 2012, 2016,
and 2020), there are two plots: one for the Democratic candidate (left) and one for the
Republican candidate (right).

As the plots demonstrate, the norm difference consistently trends downward across all
scenarios, and by the final iterations it typically falls below 10~*. For comparison, the
normalized total budget constraint is between 20-30. This indicates that the campaign effort

allocations are stabilizing, suggesting convergence to an equilibrium strategy profile under
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the national popular vote system.
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Figure 7: Convergence of Campaign Effort under a National Popular Vote System
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Notes: The figure visualizes the convergence of the computational algorithm used to find the
equilibrium effort allocations under the national popular vote system. Each plot displays the
infinity norm of the difference between a campaign’s effort allocation vector across successive
iterations, with the y-axis on a logarithmic scale. The eight panels show the results for each
party (Democratic, Republican) in each election cycle (2008, 2012, 2016, 2020). Each plot
is split into two phases: “Phase 1: Warmup” uses a simultaneous gradient-based optimizer
with an annealing schedule, while “Phase 2: IBR” refines the solution using an iterative
best-response (IBR) procedure. The consistent downward trend in the norm difference,
which typically falls below 10~* by the final iteration, indicates that the campaign effort

allocations are stabilizing and have converged to an equilibrium strategy profile.
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