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A Miscellaneous Tables and Figures

Table 1: Estimated Coefficients: Gender and Age

Parameter Variable Coefficient Std. Error P-Value

µ Male (2008) 0.533 0.123 0.000
Male (2012) 0.690 0.118 0.000
Male (2016) 0.649 0.118 0.000
Male (2020) 0.425 0.114 0.000
Age 18–29 (2008) -0.418 0.075 0.000
Age 18–29 (2012) -0.553 0.078 0.000
Age 18–29 (2016) -0.645 0.082 0.000
Age 18–29 (2020) -0.697 0.081 0.000
Age 65+ (2008) -0.308 0.101 0.002
Age 65+ (2012) -0.456 0.097 0.000
Age 65+ (2016) -0.395 0.093 0.000
Age 65+ (2020) -0.460 0.086 0.000
White (2008) 1.446 0.220 0.000
White (2012) 1.451 0.222 0.000
White (2016) 1.668 0.221 0.000
White (2020) 1.473 0.167 0.000
Black (2008) 0.263 0.223 0.238
Black (2012) 0.252 0.226 0.265
Black (2016) 0.165 0.222 0.456
Black (2020) -0.125 0.168 0.457
Native American (2008) 0.659 0.234 0.005
Native American (2012) 0.701 0.238 0.003
Native American (2016) 0.698 0.231 0.003
Native American (2020) 0.325 0.174 0.063
Asian (2008) 1.144 0.298 0.000
Asian (2012) 1.238 0.300 0.000
Asian (2016) 1.233 0.290 0.000
Asian (2020) 1.160 0.232 0.000

Notes: Coefficients reflect the estimated contribution of each demographic covariate
to baseline county-level partisan alignment. Variables are expressed as fractions of
county population unless otherwise noted.
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Table 2: Estimated Coefficients: Race and Ethnicity

Parameter Variable Coefficient Std. Error P-Value

µ Hispanic (2008) 0.734 0.223 0.001
Hispanic (2012) 0.737 0.224 0.001
Hispanic (2016) 0.687 0.220 0.002
Hispanic (2020) 0.507 0.165 0.002
White (2008) 1.446 0.220 0.000
White (2012) 1.451 0.222 0.000
White (2016) 1.668 0.221 0.000
White (2020) 1.473 0.167 0.000
Black (2008) 0.263 0.223 0.238
Black (2012) 0.252 0.226 0.265
Black (2016) 0.165 0.222 0.456
Black (2020) -0.125 0.168 0.457
Native American (2008) 0.659 0.234 0.005
Native American (2012) 0.701 0.238 0.003
Native American (2016) 0.698 0.231 0.003
Native American (2020) 0.325 0.174 0.063
Asian (2008) 1.144 0.298 0.000
Asian (2012) 1.238 0.300 0.000
Asian (2016) 1.233 0.290 0.000
Asian (2020) 1.160 0.232 0.000

Notes: See Table 1.
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Table 3: Estimated Coefficients: Education

Parameter Variable Coefficient Std. Error P-Value

µ High School Only (2008) -0.217 0.092 0.018
High School Only (2012) -0.448 0.099 0.000
High School Only (2016) -0.119 0.102 0.244
High School Only (2020) -0.194 0.100 0.052
Some College (2008) 0.303 0.078 0.000
Some College (2012) 0.087 0.085 0.307
Some College (2016) 0.350 0.088 0.000
Some College (2020) 0.110 0.088 0.209
College Only (2008) 0.220 0.109 0.043
College Only (2012) 0.123 0.108 0.255
College Only (2016) -0.351 0.110 0.001
College Only (2020) -0.679 0.103 0.000
College+ (2008) -1.976 0.153 0.000
College+ (2012) -2.015 0.151 0.000
College+ (2016) -2.253 0.149 0.000
College+ (2020) -2.525 0.133 0.000
Year (2008) -1.233 0.238 0.000
Year (2012) -1.228 0.244 0.000
Year (2016) -1.314 0.244 0.000
Year (2020) -0.674 0.193 0.000

Notes: See Table 1.

4



B Model Appendix

B.1 Derivation of the Voting Rules

The decision to vote is framed within a standard instrumental voter model. For a given

voter i, let:

• uiR be the utility if the Republican candidate (R) wins

• uiD be the utility if the Democratic candidate (D) wins

• ci > 0 be the private cost of voting (e.g., time, effort).

A voter chooses one of three actions: vote for R, vote for D, or abstain. Without loss of

generality, assume the voter prefers R to D, so uiR > uiD. The choice is therefore between

voting for R and abstaining. The voter participates if the expected utility from voting

exceeds that from abstaining.

If the voter abstains, their expected utility is the probability-weighted average of the two

possible electoral outcomes:

E[U(abstain)] = Pr(R wins|i abstains)uiR + Pr(D wins|i abstains)uiD. (1)

If the voter pays the cost ci and votes for R, their expected utility becomes:

E[U(vote R)] = Pr(R wins|i votes R)uiR + Pr(D wins|i votes R)uiD − ci. (2)

The individual votes for R if the net benefit is positive:

E[U(vote R)]− E[U(abstain)] > 0. (3)
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Note that by definition, the probabilities of winning must sum to one:

Pr(R wins|i abstains) + Pr(D wins|i abstains) = 1

Pr(R wins|i votes R) + Pr(D wins|i votes R) = 1.

Substituting equations (1) and (2) into (3) gives the following condition for participation:

[Pr(R wins|i votes R)uiR + Pr(D wins|i votes R)uiD − ci]

− [Pr(R wins|i abstains)uiR + Pr(D wins|i abstains)uiD] > 0

Rearranging terms by candidate utility:

[Pr(R wins|i votes R)− Pr(R wins|i abstains)]uiR

+ [Pr(D wins|i votes R)− Pr(D wins|i abstains)]uiD > ci

Let ∆πR be the change in the probability of R winning due to voter i’s vote. Similarly,

let ∆πD be the change for D.

∆πR = Pr(R wins|i votes R)− Pr(R wins|i abstains)

∆πD = Pr(D wins|i votes R)− Pr(D wins|i abstains)

Since probabilities must sum to one, Pr(R wins) + Pr(D wins) = 1, any increase in one

candidate’s win probability must be matched by an equal decrease in the other’s. Therefore,

∆πD = −∆πR. This change, ∆πR, is precisely the probability that voter i’s vote is pivotal

in favor of candidate R. Let’s define Ppivotal ≡ ∆πR.
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Substituting back into the inequality, we get the final decision rule:

Ppivotal · uiR + (−Ppivotal) · uiD > ci

Ppivotal · (uiR − uiD) > ci

This is the canonical result: a voter participates when the probability of being pivotal,

multiplied by the utility difference, exceeds the cost.

To make this framework empirically tractable and behaviorally plausible, the model de-

viates from a literal interpretation of Ppivotal. Instead of assuming voters calculate precise

pivot probabilities (which are vanishingly small in large electorates), I model their subjec-

tive belief in their vote’s importance as a smooth, continuous function of electoral closeness,

denoted p(κs). The utility stakes, uiR − uiD, are captured by the term |∆ui|. This leads

directly to the voting rule used in section 2.1.3 of the main text:

p(κs) · |∆ui| > ci

B.2 Deriving the Turnout Function

This section derives the county-level turnout rate equations for the Republican and Demo-

cratic candidates (equations (5) and (6)), as presented in the main text.

Consider the post-campaign utility differential for individual i in county js:

∆uijs =


min {−m(esD, esR) + ∆ũijs + ζjs , 0} , if ∆ũijs < 0,

max {m(esR, esD) + ∆ũijs − ζjs , 0} , if ∆ũijs ≥ 0,

where the baseline utility differential is

∆ũijs = µjs − ηjs − δs − ϵijs .

7

https://lukebmiller.github.io/files/JMP_lukemiller.pdf#subsubsection.2.1.3
https://lukebmiller.github.io/files/JMP_lukemiller.pdf#equation.5
https://lukebmiller.github.io/files/JMP_lukemiller.pdf#equation.6


Republican Turnout

For an R-leaning voter (∆ũijs ≥ 0), turnout occurs if

p(κs) ·∆uijs > cjs .

Substituting the definition of ∆uijs :

p(κs) ·max {m(esR, esD) + ∆ũijs − ζjs , 0} > cjs .

Note that cjs > 0 and p(κs) > 0. The condition max{A, 0} > B with B > 0 is equivalent

to A > B. The turnout condition therefore simplifies to

m(esR, esD) + ∆ũijs − ζjs >
cjs
p(κs)

.

Substituting ∆ũijs and rearranging:

ϵijs < m(esR, esD) + µjs −
cjs
p(κs)

− ηjs − δs − ζjs .

Therefore an individual votes for the Republican candidate if this condition holds, and

ϵijs < µjs − ηjs − δs (i.e., the individual is R-leaning). This gives us the joint probability of

voting for R:

Pr(Vote R) = Pr

(
ϵijs < m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs , ϵijs < µjs − ηjs − δs

)

Assume that not all R-leaning voters in a given county turn out. With thousands of

voters per county, this is a mild restriction, and it is verified post-estimation. Under this
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assumption, the first condition is the more restrictive one, implying:

m(esR, esD)− cjs
p(κs)

− ζjs < 0

Therefore, using the fact that ϵijs ∼ N(0, 1) with CDF H(·), the Republican turnout rate

in county js is

σjsR = H

(
m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
.

Democratic Turnout

For a D–leaning voter (∆ũijs < 0), turnout occurs if

p(κs) |∆uijs| > cjs .

Since

∆uijs = min{−m(esD, esR) + ∆ũijs + ζjs , 0} ≤ 0,

we have

|∆uijs| = max{m(esD, esR)−∆ũijs − ζjs , 0} .

Because cjs/p(κs) > 0, the turnout condition is equivalent to

m(esD, esR)−∆ũijs − ζjs >
cjs
p(κs)

.

Substituting ∆ũijs = µjs − ηjs − δs − ϵijs :

p(κs) · [m(esD, esR)− µjs + ηjs + δs + ϵijs − ζjs ] > cjs .
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Dividing through by p(κs) and rearranging:

ϵijs >
cjs
p(κs)

−m(esD, esR) + µjs − ηjs − δs + ζjs .

Again, assuming that not all D-leaning voters turn out, we can ignore the redundant

condition ϵijs > µjs − ηjs − δs. Because ϵijs ∼ N(0, 1) with CDF H(·), the probability that

this condition holds is

1−H

(
cjs
p(κs)

−m(esD, esR) + µjs − ηjs − δs + ζjs

)
.

Using 1−H(x) = H(−x), the Democratic turnout rate in county js is:

σjsD = H

(
m(esD, esR)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
.

B.3 Central Limit Theorem Validation

The candidate’s objective function relies on a normal approximation for the distribution

of total electoral votes. To validate this key simplifying assumption, I conduct a Monte

Carlo simulation for each election cycle. Using the estimated state-win probabilities (π̃s)

from the structural model, I simulate the election outcome 1,000,000 times, generating an

empirical distribution of electoral votes for the Democratic candidate. Figure 1 compares

the histograms of these simulated outcomes against the normal distribution with the implied

mean and variance. The close alignment for each year confirms that the normal approxima-

tion is accurate and robust, providing a solid foundation for the analysis of the candidates’

equilibrium strategies.
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(a) 2008 Election (b) 2012 Election

(c) 2016 Election (d) 2020 Election

Figure 1: Validation of the Normal Approximation for the Electoral Vote Distribution.
Each panel shows the histogram of total electoral votes for the Democratic candidate from
1,000,000 simulations, using the estimated model parameters for that election year. The
solid red line is the corresponding Normal PDF, and the dashed black line indicates the
mean of the simulated distribution.

B.4 Accuracy of the County-Shock Approximation

This section quantifies the approximation error from omitting county-level shocks, ηjs and

ζjs , when computing the probability that the Democrat wins state s. I conduct Nsim = 250

Monte Carlo simulations. In each simulation, I draw Ntrial = 10,000 independent realizations

of the shocks to estimate both the full and approximate win probabilities.

Each simulation randomly draws a number of precincts for state s, campaign effort levels

for both parties, and the structural model parameters. Then, for each of the Ntrial draws, I

sample:

ηjs ∼ N (0, σ2
j ), ζjs ∼ N (0, σ2

j ), δs ∼ N (0, σ2
s),

11



and compute two probabilities:

πfull
D = Pr

[
σsD(η, ζ, δ) > σsR(η, ζ, δ)

]
,

πapprox
D = Pr

[
σsD(0, 0, δ) > σsR(0, 0, δ)

]
,

where σsD(·) and σsR(·) denote the state-level turnout functions for Democrats and Repub-

licans, respectively, defined in Equations (5) and (6). Each probability is estimated as the

fraction of draws in which the Democrat’s simulated vote share exceeds the Republican’s.

Let ∆i = |πfull
D − πapprox

D | denote the absolute error in simulation i. I report the mean

and median absolute error across simulations, along with the standard deviation, minimum,

maximum, and percentiles of the absolute error distribution:

Mean(∆) =
1

Nsim

Nsim∑
i=1

∆i,

Median(∆) = median(∆1, . . . ,∆Nsim
).

The average absolute error is 0.0099, and the median is 0.0062. Thus, the full and

approximate probabilities differ by less than one percentage point in expectation, and by

just over a half of a percentage point in the median case.

B.5 Numerical Verification of the Uniqueness of δ̂s

This section verifies that the threshold value δ̂s defined in 10 is unique for a broad range of

parameter values and campaign effort profiles.1

Each simulation randomly draws a number of precincts for state s, campaign effort lev-

els for both parties, and the structural model parameters. For each of the Nsim = 1,000

1In principle, two distinct fixed points may exist: an interior solution and a degenerate boundary solution
of the form (x, 0, 0), where x satisfies 10 under σs,D = σs,R = 0. I exclude such degenerate solutions from
the analysis, as they do not correspond to meaningful equilibria.
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Monte Carlo simulations, I attempt to solve for (δ̂s, σs,D, σs,R) from 10, using Ntrial = 100

independent random initial guesses. The root-finding routine is a damped Newton method

implemented in JAX, with the Jacobian computed via automatic differentiation.

Let δ(r,t) = (δ̂s, σs,D, σs,R)
(r,t) denote the solution in simulation r (out of Nsim) and trial t

(out of Ntrial). Trials that fail to converge or that return the degenerate boundary solution

(x, 0, 0) are discarded.

To assess dispersion in solutions across initializations, I compute the coordinate-wise

variance:

Vart(δ
(r,t)) =

(
Vart(δ̂

(r,t)
s ), Vart(σ

(r,t)
s,D ), Vart(σ

(r,t)
s,R )

)
,

where Vart(·) denotes variance across trials t within a given simulation r. If multiple fixed

points existed, at least one coordinate of this vector would be strictly positive.

Across the 1,000 simulations, the largest coordinate-wise variance is given in Table 4.

Table 4: Dispersion of (δ̂s, σs,D, σs,R) across Random Initializations

δ̂s σs,D σs,R

max
r

Vart(·) 1.37×10−23 5.05×10−22 5.28×10−22

Notes: Values report the largest coordinate-wise variance observed over Nsim = 1,000 simulations and
Ntrial = 100 random starting points per simulation. The vanishing dispersion indicates convergence to a
single fixed point in every replication.

In every simulation, one of three outcomes occurred: (i) convergence to a unique interior

fixed point, (ii) convergence to the boundary solution (x, 0, 0), or (iii) failure to converge.

Since a valid interior solution was recovered in every parameter draw, and coordinate-wise

dispersion is vanishingly small, I conclude that the solution to 10 is globally unique whenever

an interior solution exists. Hence, the smoothed win probability, π̃s(es,D, es,R) = 1− F (δ̂s),

is well defined.
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B.6 State-Level Win Probabilities and Their Derivatives

For each effort profile (esD, esR), the state-level win probabilities π̃s(esD, esR) are determined

implicitly from the voter-turnout equilibrium. Specifically, each π̃s depends on the value of

δ̂s,t that equalizes expected Democratic and Republican vote shares within state s:

σjsD = σjsR, where σjsD =
∑
js

wjsH

(
m(esD, esR)− µjs −

cjs
p(σjsD, σjsR)

+ δ̂s

)
,

and σjsR is defined analogously. Thus, to calculate the FOC and the Jacobian, we need the

jacobian and hessian of π̃s(esD, esR) with respect to effort. Turnout rates are themselves

calculated via Newton’s method applied to the voter-turnout equilibrium within each state:

F (δ̂, σjsD, σjsR) =


F1(δ̂, σjsD, σjsR)

F2(δ̂, σjsD, σjsR)

F3(δ̂, σjsD, σjsR)



=



∑
js

wjs H

(
vDjs −

cjs
p(σjsD, σjsR)

+ δ̂

)
−
∑
js

wjs H

(
vRjs −

cjs
p(σjsD, σjsR)

− δ̂

)
∑
js

wjs H

(
vDjs −

cjs
p(σjsD, σjsR)

+ δ̂

)
− σjsD∑

js

wjs H

(
vRjs −

cjs
p(σjsD, σjsR)

− δ̂

)
− σjsR


= 0.

(4)

where js indexes counties with weights wjs in state s, H is a CDF with density h = H ′,

and

vDjs = m(esD, esR)− µjs , vRjs = m(esD, esR) + µjs .

I use p(σjsD, σjsR) instead of p(κs) here to emphasize that the turnout rates σjsD and σjsR

are the objects that enter into the voting efficacy function.

The first equation, F1 = 0, ensures that the tie shock δ̂ equalizes expected vote shares,

while F2 = 0 and F3 = 0 ensure that the turnout rates σjsD and σjsR that enter into the
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voting efficacy function p(σjsD, σjsR) are consistent with county-level turnout decisions.

To compute the gradient of π̃s efficiently, I apply the implicit function theorem (IFT)

to the system defining the voter-turnout equilibrium, avoiding the need for automatic dif-

ferentiation through nested fixed-point iterations. Within the Jacobian for the candidate

first-order conditions (Eq. 10), I also require the derivatives of these gradients with respect

to effort, which are obtained by second-order implicit differentiation.

Differentiating this system with respect to the candidates’ efforts and applying the im-

plicit function theorem gives the total derivative:

d(δ̂, σjsD, σjsR)

d(esD, esR)
= −

(
∂F

∂(δ̂, σjsD, σjsR)

)−1
∂F

∂(esD, esR)
.

I evaluate this expression numerically by solving the full three-equation system at each

iteration when calculating optimal effort levels. This approach ensures that both the tie

condition and the turnout identities are satisfied when computing gradients of the state-

level win probabilities.

The probability of winning state s is given by

π̃s(esD, esR) = 1−G(δ̂s) (5)

where G is the CDF of the state-level shock δs. In other words, for a given δ̂s, if the state-

level shock δs is greater than δ̂s, then the Democratic candidate wins the state. Combining

this expression with the total derivative of (δ̂, σjsD, σjsR) with respect to (esD, esR) gives the

gradients of the state-level win probabilities

π̃1
s = −g(δ̂s)

dδ̂s
desD

, π̃2
s = −g(δ̂s)

dδ̂s
desR

,

where g is the density corresponding to G, and dδ̂s/desD and dδ̂s/desR are obtained from the

total derivative above.
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Likewise, the second derivatives of the state-level win probabilities with respect to effort

are obtained by differentiating the gradients:

π̃11
s = −g′(δ̂s)

(
dδ̂s
desD

)2

− g(δ̂s)
d2δ̂s
de2sD

,

π̃22
s = −g′(δ̂s)

(
dδ̂s
desR

)2

− g(δ̂s)
d2δ̂s
de2sR

,

π̃12
s = −g′(δ̂s)

dδ̂s
desD

dδ̂s
desR

− g(δ̂s)
d2δ̂s

desDdesR
.

The second derivatives of δ̂s with respect to effort are obtained by using the second-order

IFT on the system in (4).

B.7 Solving for the Equilibrium Effort Allocations

The equilibrium effort allocations (e∗sD, e
∗
sR) are obtained by jointly solving the first-order

conditions implied by each candidate’s optimization problem, subject to their respective

budget constraints. This ensures that the model’s predicted effort levels are mutually optimal

given expectations about state-level competitiveness and voter responsiveness.

In the following, I deviate slightly from the main text by letting esD and esR denote total

effort in state s (rather than effort per capita); π̃s(esD,esR) converts these to per-capita units

internally. This is purely a notational change. Let BG denote the set of battleground states

and S ≡ |BG|.

Candidate D chooses effort allocations {esD}s∈BG to maximize the probability of securing

at least 270 electoral votes:

max
{esD}s∈BG

Φ

( ∑
s∈BG π̃s(esD, esR) ls − (270− EVD)√∑
s∈BG π̃s(esD, esR)[1− π̃s(esD, esR)] l2s

)
s.t.

∑
s∈BG

esD ≤ BD. (6)
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Likewise, for the Republican candidate:

max
{esR}s∈BG

Φ

(∑
s∈BG[1− π̃s(esD, esR)] ls − (270− EVR)√∑

s∈BG π̃s(esD, esR)[1− π̃s(esD, esR)] l2s

)
s.t.

∑
s∈BG

esR ≤ BR. (7)

These inequalities bind in equilibrium, so I solve the equivalent equality-constrained

problem. Let π̃1
s ≡ ∂π̃s/∂esD and π̃2

s ≡ ∂π̃s/∂esR, and for compactness, define

fD(eD, eR) =

∑
s∈BG π̃sls − (270− EVD)√∑

s∈BG π̃s(1− π̃s)l2s
, fR(eD, eR) =

∑
s∈BG[1− π̃s]ls − (270− EVR)√∑

s∈BG π̃s(1− π̃s)l2s
,

Then the first-order condition for candidate D in state s is

ϕ
(
fD(eD, eR)

)[ lsπ̃
1
s√∑

t∈BG π̃t(1− π̃t)l2t
−
∑

t∈BG π̃tlt − (270− EVD)

2
[∑

t∈BG π̃t(1− π̃t)l2t
]3/2 l2s π̃

1
s(1− 2π̃s)

]
= λD,

(8)

where λD is the Lagrange multiplier on the budget constraint and ϕ(·) is the standard normal

density. An analogous condition holds for candidate R:

ϕ
(
fR(eD, eR)

)[ −lsπ̃2
s√∑

t∈BG π̃t(1− π̃t)l2t
−
∑

t∈BG(1− π̃t)lt − (270− EVR)

2
[∑

t∈BG π̃t(1− π̃t)l2t
]3/2 l2s π̃

2
s(1− 2π̃s)

]
= λR.

(9)

The system in (8)–(9) is solved using a hybrid root-finder: a Newton–Raphson step is

first attempted; if the residual norm does not contract or yields negative effort levels, the

algorithm switches to a damped Newton (Levenberg–Marquardt) update in log-space, where

xs,q = log es,q ensures es,q ≥ 0 by construction.

The first-order conditions can be written succinctly as

ϕ
(
fD(eD, eR)

) ∂fD

∂esD
= λD, ϕ

(
fR(eD, eR)

) ∂fR

∂esR
= λR.

Newton’s method and Levenberg–Marquardt attempt to find the root of the stacked
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system: 

ϕ(fD) ∂fD

∂e1D
− λD

...

ϕ(fD) ∂fD

∂esD
− λD

ϕ(fR) ∂fR

∂e1R
− λR

...

ϕ(fR) ∂fR

∂esR
− λR∑

s∈BG esD −BD∑
s∈BG esR −BR



= 0.

The first S equations correspond to the Democratic candidate’s FOCs, and the next S

to the Republican candidate’s, followed by two budget equalities.

To simplify the problem, I subtract each element of the candidate’s FOC system by the

next one, yielding |BG| − 1 equations per candidate that do not depend on the Lagrange

multipliers. The last two equations are the budget constraints, which do depend on the

multipliers. This also allows me to divide out the ϕ(fD) and ϕ(fR) from each row. This

transformation improves numerical stability and speeds convergence. The system is now:



∂fD

∂e1D
− ∂fD

∂e2D

...

∂fD

∂e(s−1)D
− ∂fD

∂esD

∂fR

∂e1R
− ∂fR

∂e2R

...

∂fR

∂e(s−1)R
− ∂fR

∂esR∑
s∈BG esD −BD∑
s∈BG esR −BR



= 0.

This yields a square system of dimension 2S, with one equation per unknown effort level.
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Let,

gDs =
∂fD

∂esD
− ∂fD

∂e(s+1)D

, gRs =
∂fR

∂esR
− ∂fR

∂e(s+1)R

, hD =
∑
s∈BG

esD−BD, hR =
∑
s∈BG

esR−BR.

The Jacobian of the 2S equations with respect to the 2S unknowns is

J(eD, eR) =



∂gD1
∂e1D

· · · ∂gD1
∂eSD

∂gD1
∂e1R

· · · ∂gD1
∂eSR

...
...

...
...

∂gDS−1

∂e1D
· · ·

∂gDS−1

∂eSD

∂gDS−1

∂e1R
· · ·

∂gDS−1

∂eSR
∂gR1
∂e1D

· · · ∂gR1
∂eSD

∂gR1
∂e1R

· · · ∂gR1
∂eSR

...
...

...
...

∂gRS−1

∂e1D
· · ·

∂gRS−1

∂eSD

∂gRS−1

∂e1R
· · ·

∂gRS−1

∂eSR

1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1



, (10)

which is a 2S×2S matrix. In the next section (B.6), I describe how to compute the derivatives

of the state-level win probabilities that enter into these expressions.

C Identification Appendix

C.1 Identification via Monte Carlo Simulation

For the first validation exercise, I use the observed county- and state-level covariates from

the empirical application,
(
Xµ

js
, Xc

js

)
, to generate R = 100 synthetic elections. In each

replication, I draw a fresh vector of coefficients

(βµ, βc, βα1 , βα2 , βθ, βη, βδ),
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compute equilibrium campaign efforts
(
e
(r)
s,D, e

(r)
s,R

)
, draw county- and state-level shocks, and

simulate turnout. I then re-estimate the model on each simulated dataset using the same

likelihood function and optimization routine as in the baseline estimation. To economize

on computation time, I use a reduced covariate set and fix γ = 2 and ψ = 0. Replications

that fail to converge or do not yield an equilibrium profile are excluded, as this issue does

not arise in the empirical application. Table 5 reports the results. Mean estimation errors

are centered at zero, indicating unbiasedness, and mean squared errors are small, indicating

high precision. This confirms that the structural parameters can be reliably recovered.
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Table 5: Parameter-recovery diagnostics across Monte-Carlo replications

Parameter MSE RMSE 25th pctl 75th pctl

Male (18–29) 1.89× 10−4 0.0138 −0.0078 0.0077

Female (65–79) 5.11× 10−4 0.0226 −0.0127 0.0147

White 2.12× 10−5 0.0046 −0.0029 0.0021

Black 2.92× 10−5 0.0054 −0.0041 0.0028

Hispanic 2.37× 10−5 0.0049 −0.0026 0.0028

High school only 1.04× 10−4 0.0102 −0.0052 0.0063

Some college 5.19× 10−5 0.0072 −0.0022 0.0060

College only 1.54× 10−4 0.0124 −0.0063 0.0078

Employed 8.91× 10−6 0.0030 −0.0013 0.0019

Voter ID Index 8.02× 10−7 0.00090 −0.00041 0.00049

Cost constant 3.54× 10−6 0.00188 −0.00103 0.00085

α1 2.59× 10−2 0.1609 −0.0265 0.0204

α2 2.46× 10−1 0.4956 −0.0581 0.0863

θ 5.06× 10−5 0.0071 −0.0040 0.0037

σc 5.92× 10−5 0.0077 0.00033 0.0080

σs 6.96× 10−3 0.0834 −0.0259 0.0623

Notes: MSE is the mean squared estimation error across Monte-Carlo replications, and RMSE is
its square root. The final two columns report the 25th and 75th percentiles of the estimation error
distribution for each parameter.

C.2 Identification on estimated coefficients

To assess local identification and numerical stability, I conduct a likelihood sensitivity anal-

ysis around the estimated parameter vector β̂. For each element βk, I generate a grid of

values in a neighborhood around β̂k, holding all other elements fixed. At each grid point, I

re-evaluate the full-sample log-likelihood function and its gradient.
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Formally, let β̂ ∈ RK denote the estimated parameter vector, and fix a grid of shocks

{δm}Mm=1. For each index k = 1, . . . , K, I define a perturbed parameter vector β(k,m) such

that

β
(k,m)
j =


β̂j + δm, if j = k,

β̂j, otherwise.

For each perturbed vector, I compute the log-likelihood ℓ(β(k,m)) and record the results.

This procedure yields a series of univariate likelihood profiles centered at β̂k, which allow

visual inspection of local curvature and potential flat regions in the likelihood surface. In

practice, I fix δm to be between -1 and 1, with a total of 20 grid points for each βk.

Figures 2 - 5 plot these likelihood profiles for each βk. The results show that the

likelihood is locally well-behaved and concave in the neighborhood of each coefficient. No

flat regions or multimodalities are detected, providing reassurance that the likelihood-based

estimator is locally identified and numerically stable. The only exception are the α1 and

the α2 parameters, which govern the perceived efficacy function. These parameters exhibit

a flatter likelihood profile. However, the likelihood still exhibits a midpoint around the true

value, suggesting that the model is still locally identified, albeit with less precision for these

parameters.

D Data Appendix

D.1 Polling-place congestion

I proxy queues at the polls with a crowding index that scales the voting-age population by

the number of in-person polling locations on Election Day. Let PP jt denote the number

of polling places and VAP jt the voting-age population in county j during election year t,
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Figure 2: Log-likelihood profiles around each βk (Graph 1)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 3: Log-likelihood profiles around each βk (Graph 2)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 4: Log-likelihood profiles around each βk (Graph 3)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 5: Log-likelihood profiles around each βk (Graph 4)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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defined as the number of residents aged 18 and older. The congestion index is defined as

Congest jt = log

(
VAP jt

P̂P jt

)
,

where P̂P jt is the observed number of polling sites, or a predicted value when the data is

missing.

Approximately 19% of county-election observations are missing polling place data. I im-

pute these missing values using a Gradient Boosting model trained on county-year covariates,

including a linear time trend, log voting-age population, demographic shares (age, gender,

race, education, employment), and state fixed effects. I first log-transform the number of

polling places to reduce skewness and ensure positive predictions. Model hyperparameters

are selected via five-fold cross-validated grid search over tree depth, regularization, learning

rate, and number of iterations. The model is trained on observed data from the 2008-2020

cycles. The final model achieves an out-of-sample R2 = 0.838.
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D.2 Summary statistics

Table 6: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Battle-
ground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max

Male 3,174 0.501 0.026 0.374 0.488 0.496 0.505 0.790

Age 18–29 3,174 0.147 0.047 0.034 0.123 0.137 0.156 0.591

Age 65+ 3,174 0.162 0.044 0.028 0.134 0.159 0.185 0.514

White 3,174 0.789 0.176 0.086 0.680 0.852 0.932 0.998

Black 3,174 0.103 0.143 0.000 0.008 0.033 0.145 0.791

Native American 3,174 0.008 0.037 0.000 0.001 0.002 0.004 0.796

Asian 3,174 0.013 0.018 0.000 0.003 0.006 0.014 0.189

Hispanic 3,174 0.066 0.082 0.000 0.019 0.039 0.078 0.831

High School Only 3,174 0.352 0.077 0.055 0.304 0.354 0.405 0.556

Some College 3,174 0.297 0.048 0.114 0.265 0.300 0.330 0.455

College Only 3,174 0.142 0.059 0.030 0.098 0.130 0.170 0.480

College+ 3,174 0.077 0.046 0.007 0.047 0.064 0.094 0.437

Notes: All variables are expressed as population shares unless otherwise noted. Statis-
tics are based on county-level data from battleground states where effort is endoge-
nously allocated in equilibrium.
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Table 7: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Non-
Battleground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max

Male 9,322 0.501 0.023 0.405 0.489 0.497 0.507 0.764

Age 18–29 9,322 0.147 0.041 0.031 0.125 0.141 0.159 0.554

Age 65+ 9,322 0.157 0.041 0.031 0.129 0.154 0.181 0.402

White 9,322 0.763 0.207 0.007 0.647 0.839 0.927 1.000

Black 9,322 0.084 0.144 0.000 0.005 0.018 0.085 0.874

Native American 9,322 0.021 0.081 0.000 0.001 0.003 0.007 0.910

Asian 9,322 0.013 0.030 0.000 0.002 0.005 0.011 0.522

Hispanic 9,322 0.097 0.148 0.000 0.020 0.038 0.098 0.991

High School Only 9,322 0.345 0.070 0.071 0.300 0.349 0.396 0.557

Some College 9,322 0.301 0.055 0.111 0.265 0.301 0.338 0.506

College Only 9,322 0.136 0.055 0.019 0.095 0.126 0.166 0.457

College+ 9,322 0.072 0.042 0.000 0.045 0.060 0.086 0.483

Notes: All variables are expressed as fractions of county population unless otherwise
noted. Observations cover counties in non-battleground states where campaign effort
is set to zero in equilibrium.
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Table 8: Summary Statistics for Cost of Voting Index by Urban/Rural Status and State
Type

Urban Counties Rural Counties

Statistic BG Non-BG BG Non-BG

Count 231 375 2880 8324

Mean 0.584 0.593 0.540 0.521

Std. Dev. 0.042 0.050 0.054 0.064

Min 0.471 0.491 0.334 0.000

25th Pctl 0.559 0.563 0.505 0.482

Median 0.590 0.587 0.536 0.519

75th Pctl 0.609 0.613 0.570 0.558

Max 0.760 0.976 0.887 1.000

Notes: The cost of voting index reflects percentile-
transformed congestion measures interacted with ur-
ban status. Urban counties are defined as those with
more than 350 residents per square kilometer. BG =
Battleground states (receive campaign effort); Non-
BG = Non-battleground states (no campaign effort).
All statistics are computed at the county-election
level. Values are at the county-election level.
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Table 9: Summary Statistics for Election-Law Indices by State Type

Voter ID Index Poll Hours Index Reg. Deadline Index

Statistic BG Non-BG BG Non-BG BG Non-BG

Count 40 160 40 160 40 160

Mean 0.300 0.273 0.377 0.380 0.519 0.563

Std. Dev. 0.345 0.317 0.142 0.207 0.463 0.406

Min 0.000 0.000 0.000 0.000 0.000 0.000

25th Pctl 0.000 0.000 0.333 0.333 0.000 0.000

Median 0.250 0.250 0.333 0.417 0.717 0.700

75th Pctl 0.500 0.500 0.500 0.500 0.967 0.967

Max 1.000 1.000 0.667 1.000 1.000 1.000

Notes: All indices are scaled to the unit interval. Higher values reflect
more restrictive voting policies. BG = Battleground states (receive
campaign effort); Non-BG = Non-battleground states (no campaign
effort). Values is at the state-year level.
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Table 10: Summary Statistics for Cost of Voting Covariates by State Type

Fraction Employed

Statistic BG Non-BG

Count 3,174 9,059

Mean 0.598 0.589

Std. Dev. 0.080 0.079

Min 0.136 0.000

25th Pctl 0.551 0.541

Median 0.606 0.597

75th Pctl 0.654 0.645

Max 0.855 0.831

Notes: Variable normalized to
the unit interval using empir-
ical percentiles. BG = Bat-
tleground states (receive cam-
paign effort); Non-BG = Non-
battleground states (no cam-
paign effort). Statistics are
based on county-election level
observations.

D.3 Battleground state classification

To illustrate the sharp concentration of campaign resources, Figure 6 plots the marginal

increase in total advertising expenditures from adding each successive state to the battle-

ground set, ranked in descending order of combined Democratic and Republican spending

between August 1 and Election Day. Across all years, the first few states produce large

jumps in total spending, but the marginal gain falls rapidly. By the tenth state, additional

states contribute negligibly to overall expenditures, confirming that campaign activity is

overwhelmingly focused on a small set of states.
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Figure 6: Percent Increase from Adding States to the Battleground Classification

Notes: Each curve shows the percent increase in total advertising expenditures from adding

the next state to the battleground set, with states ranked in descending order of combined

Democratic and Republican television spending between August 1 and Election Day. Data

are from the Wesleyan Media Project for the 2008, 2012, 2016, and 2020 presidential elec-

tions.

Tables 11 and 12 summarize the distribution of observed television advertising expendi-

tures across states. In each election year, the top ten states account for more than 86% of

total spending, with this share rising to 92% in 2020. This sharp concentration motivates

the definition of battleground states used in the model.

Among the remaining 40 states, most receive negligible effort: the median share is effec-

tively zero in every year, and even the 75th percentile remains well below 1% in all cycles.

These patterns support the assumption that campaign effort is zero in non-battleground

states. While this imposes a discrete cutoff, it closely mirrors the observed data and sub-

stantially simplifies the model’s strategic problem without distorting the distribution of

effort.
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Table 11: Summary Statistics for Share of Total Effort in Non-Battleground States

Statistic 2008 2012 2016 2020

Mean 0.0045 0.0036 0.0029 0.0022
Std. Dev. 0.0110 0.0060 0.0053 0.0041
Min 0.0000 0.0000 0.0000 0.0000
25th pct. 0.0000 0.0000 0.0001 0.0000
Median 0.0000 0.0000 0.0002 0.0000
75th pct. 0.0010 0.0071 0.0030 0.0022
Max 0.0448 0.0196 0.0221 0.0163

Table 12: Share of Total Campaign Effort in Top 10 Battleground States

Year 2008 2012 2016 2020

Share 0.830 0.862 0.862 0.924

D.4 Constructing Campaign Budget Shares and Total Effort

D.5 Data Sources

Campaign–finance information comes from two datasets:

• Television advertising. Gross state-level outlays on presidential television ads are pro-

vided by the Wesleyan Media Project. These figures form the variable TVs,p discussed

in Section 4.4.

• Operating expenditures. Itemized operating-expenditure files released by the Federal

Election Commission (FEC) record every payment made by candidate committees,

including transaction date, amount, and free-text purpose description.

D.6 Filtering Operating Expenditures

The raw FEC files contain many transactions unrelated to voter mobilization. The following

rules are applied to retain only plausible mobilization outlays:

1. General-election focus: Keep entries tagged as general or general–primary spending.
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2. Candidate committees: Restrict to disbursements by the principal presidential com-

mittees of each major party.

3. Purpose description cleaning: Convert purpose strings to lower-case and harmonize

common variants (e.g. “on-line” → “online”).

4. Positive keyword match: Retain only transactions whose purpose description matches

one of the five predefined mobilization categories (media, online, print, telemarketing,

travel) based on regular expressions.

D.7 Classifying Mobilization Channels

Every retained transaction is assigned to one of five mutually exclusive mobilization cate-

gories using keyword patterns:

Category Matched keywords in purpose description

media media, tv, broadcast

online online, digital, facebook, google, youtube, twitter,

instagram, snapchat, web, internet

print print, post, mail, leaflet

telemarketing telemarketing, phone, text, sms

travel travel, event, rally, airfare, hotel

Ambiguous strings are resolved by a priority order media ≻ online ≻ print ≻ telemarketing ≻

travel, ensuring each transaction appears exactly once.
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E Results Appendix

E.1 Calculating Elasticity of Turnout with Respect to Campaign

Effort

To quantify marginal responsiveness, I exploit the equilibrium conditions for county-level

turnout, defined in equations (5) and (6). In equilibrium, the following system must be

satisfied for each county js in state s and each party p ∈ {D,R}:

Fjs,D(e,σ) ≡ σjs,D −H

(
m(es,D, es,R)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
= 0, (11)

Fjs,R(e,σ) ≡ σjs,R −H

(
m(es,R, es,D) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
= 0, (12)

where

σs,p =
∑
js∈Js

wjsσjs,p, p(κs) := p(σs,D, σs,R).

Stacking equations (11) and (12) over all counties in a given state yields the vector-valued

function F (e,σ) ∈ R2|J |. The Jacobians ∂F/∂σ and ∂F/∂e enter the implicit function

theorem:

∂σ

∂e
= −

(
∂F

∂σ

)−1(
∂F

∂e

)
,

which is used to compute marginal turnout responses to changes in campaign effort.

From these derivatives, I compute county-level elasticities of the form

εjs,p,q =

(
∂σjs,p
∂es,q

)(
es,q
σjs,p

)
, p, q ∈ {D,R},
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F Validating the Effects of Competitiveness using a

Border Discontinuity Design

F.1 Balance Tests and Covariate Adjustment

Before estimating the main regression, I test whether counties on opposite sides of a state

border that share a media market differ systematically in observable characteristics. For

each of fourteen covariates Xcpt, I estimate a regression of the form:

Xcpt = β · HighCompcpt + δpt + εcpt (13)

The indicator HighCompcpt equals one if county c lies on the more competitive side of its

border pair p in year t. All specifications include border-pair year fixed effects δpt. Standard

errors are clustered at the county level.

Across the covariates tested, which include demographics, educational attainment, in-

come, and employment status, only one shows statistically significant differences at conven-

tional levels, the share of Hispanic residents is higher in competitive counties (0.6 percentage

points, p < 0.01). While statistically significant, this difference is small in magnitude. As a

robustness check, I separately run the main regression including this covariate, along with

the full set of covariates used in the balance tests.

Results using pre-election polling averages instead of realized vote shares similarly demon-

strate no significant differences in covariates across border counties, with the exception of

fraction of residents employed.

37



Table 13: Covariate Balance Across Border Counties

Realized Vote Shares Pre-Election Polls

Covariate Estimate Std. Error Estimate Std. Error

Male 0.001 (0.001) 0.001 (0.001)
Age 18–29 −0.001 (0.001) −0.001 (0.001)
Age 65+ 0.001 (0.001) 0.002 (0.001)
White 0.002 (0.005) 0.006 (0.004)
Black −0.003 (0.003) −0.004 (0.003)
American Indian/Alaska Native −0.003 (0.003) −0.004 (0.003)
Asian 0.001 (0.001) 0.001 (0.001)
Hispanic 0.006∗∗ (0.002) 0.003 (0.002)
High School Only 0.001 (0.002) 0.004 (0.002)
Some College 0.002 (0.002) 0.001 (0.002)
College Only 0.001 (0.002) 0.000 (0.002)
College+ −0.001 (0.001) −0.001 (0.001)
Log Median Income 0.012 (0.008) 0.011 (0.007)
Employed 0.004 (0.002) 0.004∗ (0.002)

Observations 8,126 8,032

Notes: Each row reports the coefficient from a separate regression of the specified covariate on an
indicator for high competitiveness. All regressions include border-pair-by-year fixed effects. Co-
variates represent shares unless otherwise noted. Standard errors (in parentheses) are clustered by
county. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.

F.2 Results

Table 14 reports the main regression-discontinuity estimates. Column (1) presents the base-

line specification without covariates. Column (2) adds Hispanic population share, the only

variable flagged as imbalanced in the balance tests. Column (3) includes the full set of

demographic and economic controls. Standard errors (clustered by county-pair) appear in

parentheses. Across specifications, the estimated coefficients range from 0.054 to 0.064, and

are statistically significant at the p < 0.001 level.

I additionally test whether results are sensitive to the measurement of competitiveness.

Instead of realized vote shares, Appendix F.5 uses pre-election polling to construct κst. Al-

though the estimated coefficients are smaller (0.029–0.030), they remain positive and highly

significant, reinforcing that the turnout response is not an artifact of post-treatment mea-
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sures of closeness.

Table 14: Effect of Competitiveness on Turnout

(1) (2) (3)

Competitiveness
Estimate 0.054∗∗∗ 0.059∗∗∗ 0.064∗∗∗

(Std. Error) (0.007) (0.007) (0.007)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 8,126 8,126 8,126
R2

within 0.003 0.156 0.534

Notes: Each column reports regression estimates of the effect of state-level competi-
tiveness on turnout, measured at the county-border pair-year level. All models include
border-pair-by-year fixed effects and state fixed effects. Columns (2) and (3) sequen-
tially add controls for covariates flagged as imbalanced in the balance tests and the full
set of demographic and economic covariates. Standard errors (in parentheses) are clus-
tered at the county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.

Table 15: Estimated Turnout Effect of Moving from Average Non-
Battleground Competitiveness to Full Competitiveness

No Controls Balance Sig. Controls All Controls

Effect (pp) 1.67 1.82 1.98

Notes: Each entry reports the estimated increase in turnout (in percent-
age points) associated with raising competitiveness from the non-battleground
state mean (κst = 0.694) to full competitiveness (κst = 1), based on the coef-
ficients in Table 14.

To ensure the results of the border discontinuity are not driven by idiosyncrasies of

the data, I conduct a complementary robustness check replicating the analysis of Spenkuch

and Toniatti (2018). Their approach compares counties on opposite sides of a media market

boundary but within the same state, thereby holding competitiveness constant while allowing

television advertising exposure to vary. I recover similar estimates: campaign advertising has

no discernible effect on turnout, while differences in partisan spending meaningfully affect

vote shares. The close replication of their findings indicates that the turnout effects in my

main design are not artifacts of sample selection or measurement, but reflect genuine effects

of electoral competitiveness. See Appendix F.6 for details.
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F.3 Robustness to Field Offices and Events

A potential concern with the border discontinuity design is that shared media markets may

not fully equalize campaign exposure. In particular, ground operations such as field offices,

canvassing hubs, or campaign events may vary discontinuously at state lines. To evaluate

this concern, I construct a county-level dataset of field office and event activity from the 2008

to 2020 presidential elections, using disbursement records from the Federal Election Commis-

sion (FEC), available at https://www.fec.gov/data/browse-data/?tab=bulk-data. The

data include transaction-level operating expenditures by presidential candidates’ authorized

committees.

I restrict attention to disbursements classified as rent, lease, or event-related, and exclude

entries referring to equipment, services, or transportation using a set of keyword-based filters

(for example, “car rental” or “audio/video”). Each transaction is mapped to a county using

a ZIP-to-county crosswalk. If a ZIP code spans multiple counties, I conservatively assign the

spending to all relevant counties.

The final dataset defines a binary indicator for whether any field office or event activity

occurred in a given county-year. A balance test analogous to Appendix F.1 shows that more

competitive counties are approximately five percentage points more likely to exhibit such

activity, a difference that is statistically significant at the p < 0.001 level.

To assess the impact of this potential confound, I re-estimate the main regression af-

ter excluding any county pair where either county recorded ground activity. This removes

approximately 1,000 county-border pair-year observations. As shown in Table 16, the esti-

mated effect of competitiveness on turnout remains highly stable, with coefficients ranging

from 0.053 to 0.067 depending on the specification. These results suggest that the main

estimates are not driven by differences in ground operations across state lines.
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Table 16: Effect of Competitiveness on Turnout (No-Office Sample Only)

(1) (2) (3)

Competitiveness
Estimate 0.053∗∗∗ 0.057∗∗∗ 0.067∗∗∗

(Std. Error) (0.011) (0.011) (0.010)

Controls No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 7,056 7,056 7,056

R2
within 0.003 0.152 0.531

Notes: Each column reports regression estimates of the effect of state-level competi-

tiveness on turnout, restricted to counties with no observed field offices or campaign

events. All models include border-pair-by-year fixed effects and state fixed effects.

Columns (2) and (3) sequentially add controls for covariates flagged as imbalanced

in the balance tests and the full set of demographic and economic covariates. Stan-

dard errors (in parentheses) are clustered at the county-pair level. Significance levels:

∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.

F.4 Digital Campaign Spending and Turnout

To further validate the model’s predictions, I examine the relationship between state-level

competitiveness, digital campaign spending, and turnout. I construct a state-level dataset

of digital advertising expenditures for the 2020 election using records from the Center for

Responsive Politics (OpenSecrets.org). I focus on the four largest general-election commit-

tees: Trump Make America Great Again Committee, Donald J. Trump for President, Biden

for President, and the Biden Victory Fund. The first two are Republican committees, while

the latter two are Democratic. I extract state-level totals of digital advertising from their

public dashboards, merge the totals to obtain party-level spending, and compute per-capita

values by dividing state totals by the voting-age population.
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I then re-estimate the border discontinuity design described in equation 19, including per-

capita digital spending as an additional regressor. The results, reported in Table 17, show

that competitiveness remains a positive and statistically significant determinant of turnout

even after controlling for digital spending.

Because digital advertising was minimal in earlier elections, I replicate the analysis using

data from the 2008 and 2012 presidential contests. This limits the possibility that the

estimated effect of competitiveness is driven by variation in digital spending. The results,

reported in Table 18, yield coefficients nearly identical to the baseline estimates.

Table 17: Effect of Competitiveness and Digital Spending on Turnout

(1) (2) (3) (4)

Competitiveness
Estimate 0.153∗∗∗ 0.141∗∗∗ 0.171∗∗∗ 0.133∗∗∗

(Std. Error) (0.013) (0.019) (0.018) (0.014)

Digital Spending (per capita)
Estimate 0.006 −0.002 0.003

(Std. Error) (0.006) (0.005) (0.004)

Controls No No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes Yes

State FE No No No No

Observations 2,044 2,044 2,044 2,044

R2
within 0.111 0.112 0.229 0.581

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout, with

and without controls for per-capita digital advertising spending. All specifications include border-pair-by-year

and state fixed effects. Columns (3) and (4) add covariates flagged as imbalanced in the balance tests and the

full set of demographic and economic controls, respectively. Standard errors (in parentheses) are clustered at the

county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.
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Table 18: Effect of Competitiveness on Turnout (2008–2012 Elections)

(1) (2) (3)

Competitiveness
Estimate 0.058∗∗∗ 0.061∗∗∗ 0.063∗∗∗

(Std. Error) (0.009) (0.009) (0.010)

Controls No Controls Balance Sig. Controls All Controls

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 4,088 4,088 4,088

R2
within 0.002 0.144 0.536

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout

in the 2008 and 2012 elections. All specifications include border-pair-by-year and state fixed effects.

Column (2) adds Hispanic population share, the only covariate flagged as imbalanced in balance

tests. Column (3) includes the full set of demographic and economic controls. Standard errors

(in parentheses) are clustered at the county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01,

∗∗∗ p<0.001.

F.5 Validation with Pre-Election Polling

To match with the model as closely as possible, the main regression uses realized vote shares

to measure competitiveness. However, this approach may be subject to endogeneity concerns,

as the same factors that drive turnout may also influence vote shares. To address this, I

conduct a robustness check using pre-election polling data to measure competitiveness. I

obtain state-level pre-election polling data from the Fivethirtyeight GitHub repository, which

compiles polling averages from various sources and adjusts them for pollster quality, sample

type, and recency. They give a predicted two-party vote share for each state in each election

year over the election cycle throughout the 2008–2020 period. Polling data are unavailable

for Delaware, Mississippi, and Wyoming in 2012. I use the final pre-election polling average

available before Election Day for each state-year.

Similarly to the main regression, I define competitiveness as the ratio of the expected

Democratic vote share to the expected Republican vote share in each state-year. The results
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using pre-election polling data are reported in Table 19. While the overall effect is smaller, the

estimated effect of competitiveness on turnout remains positive and statistically significant,

with coefficients ranging from 0.027 to 0.030 depending on the specification. This translates

to an increase in turnout of approximately 0.88 to 0.98 percentage points when moving from

the non-battleground state mean (κst = 0.677) to full competitiveness (κst = 1), as shown

in Table 20.

Although these estimates are lower than those from the main specification (1.72 to 2.17

percentage points) and the model’s predicted effect (1.81 points), they remain directionally

consistent and statistically robust. The smaller magnitudes may reflect greater noise in

polling-based measures of competitiveness, which are based on expectations rather than

realized outcomes.

Table 19: Effect of Competitiveness on Turnout (Pre-Election Polls)

(1) (2) (3)

Competitiveness
Estimate 0.029∗∗ 0.027∗∗ 0.030∗∗∗

(Std. Error) (0.010) (0.010) (0.009)

Controls No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 8,032 8,032 8,032

R2
within 0.001 0.007 0.540

Notes: Each column reports regression estimates of the effect of state-level compet-

itiveness (measured using pre-election polling averages) on turnout, at the county-

border pair-year level. All models include border-pair-by-year fixed effects and state

fixed effects. Columns (2) and (3) sequentially add controls for covariates flagged

as imbalanced in the balance tests and the full set of demographic and economic

covariates. Standard errors (in parentheses) are clustered at the county-pair level.

Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.
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Table 20: Estimated Turnout Effect of Moving from Average
Non-Battleground Competitiveness to Full Competitiveness (Pre-
Election Polls)

No Controls Balance Sig. Controls All Controls

Effect (pp) 0.93 0.88 0.98

Notes: Each entry reports the estimated increase in turnout (in percent-

age points) associated with raising competitiveness from the non-battleground

state mean (κst = 0.677) to full competitiveness (κst = 1), based on the pre-

election polling estimates in Table 19.

F.6 Replicating Spenkuch and Toniatti (2018)

I replicate the design of Spenkuch and Toniatti (2018), which compares counties on opposite

sides of media market boundaries but within the same state. This holds competitiveness

fixed while allowing campaign exposure to vary.

Consistent with their findings, I find that per-capita campaign spending has no effect on

turnout. However, when I regress the difference in per-capita spending between Democratic

and Republican campaigns on the corresponding difference in vote shares, the estimated

effect is large, positive, and statistically significant.

This closely mirrors the core result of Spenkuch and Toniatti (2018), who find that

campaign advertising persuades but does not mobilize. The fact that I recover similar

estimates using their design suggests that the strong turnout effects in my main analysis

reflect differences in research design rather than differences in data.

G Marginal Cost Derivation

Total votes for party q in state s are given by:

Vs,q =
∑
js∈s

VAPjs · σjs,q,
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Table 21: Reduced-Form Effects of Campaign Spending

Panel A: Turnout

(1) (2) (3)

Total Spending
Estimate 0.001 0.000 0.000
(Std. Error) (0.001) (0.001) (0.000)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R2

within 0.000 0.080 0.594

Panel B: Vote Share Difference

(1) (2) (3)

Spending Difference
Estimate 0.018∗∗∗ 0.015∗∗∗ 0.010∗∗∗

(Std. Error) (0.005) (0.004) (0.003)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R2

within 0.004 0.181 0.645

Notes: Panel A regresses county-level turnout on total per-capita campaign spending.
Panel B regresses the difference in Democratic and Republican vote shares on the difference
in per-capita campaign spending. All models include either border-pair or border-pair-by-
year fixed effects. Columns (2) include only covariates flagged as imbalanced in balance
tests. Columns (3) include the full set of demographic and economic controls. Standard
errors (in parentheses) are clustered by county. Significance levels: ∗ p<0.05, ∗∗ p<0.01,
∗∗∗ p<0.001.

where VAPjs is the voting-age population in county js, and σjs,q is the party-specific turnout

share. Differentiating yields:

∂Vs,q
∂es,q

=
∑
js∈s

VAPjs ·
∂σjs,q
∂es,q

,

and thus:

MCVs,q =

(∑
js∈s

VAPjs ·
∂σjs,q
∂es,q

)−1

.
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H Computational Strategy for the Popular Vote

The primary source of computational complexity in the national popular vote simulation is

the cross-state dependency created by the national efficacy term p(σD, σR). In the baseline

model, state-level win probabilities could be calculated independently conditional on effort.

This meant I could approximate the total number of electoral votes using a normal distri-

bution. Now, however, a shock δs in one state affects turnout in all other states by altering

the national vote totals and, consequently, the perceived efficacy of voting.

To calculate the optimal campaign strategies under this new scenario, I employ a Monte

Carlo simulation approach to approximate the probability of winning the national popular

vote. For a given effort allocation (eD, eR), I draw M vectors of state-level shocks {δs}s∈S .

Given there are 50 states, I draw 50 state-level shocks for each m ∈M vector.

I calculate the optimal campaign strategies in two steps. First, I use a gradient-based

optimizer to find an approximate equilibrium. Then, I refine this solution using an iterative

best-response (IBR) procedure. In both cases, I use a gradient-based optimization method

(the Adam optimizer) to find the optimal effort allocations for each candidate. However,

the Monte Carlo procedure yields a discontinuous and non-differentiable objective function,

preventing the use of standard gradient-based optimization methods. To address this, I

approximate the indicator function for winning with a logistic sigmoid function, creating a

“soft win” objective:

WD(eD, eR) ≈
1

M

M∑
m=1

1

1 + exp(−k ·margin(m))

where margin(m) = σ
(m)
D −σ

(m)
R is the national popular vote share margin in simulation draw

m, and σ
(m)
p is the total national vote share for party p given the m-th vector of state-level

shocks. This objective function is smooth, allowing for the computation of exact gradients

via automatic differentiation.

In the first step, I use the Adam optimizer to perform simultaneous gradient updates
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to find an approximate equilibrium. This phase incorporates an annealing schedule for the

sigmoid’s steepness parameter, k, which is incrementally increased from k = 10 to k = 25,

and finally to k = 50. In practice, this means the objective function starts as a smooth

approximation of the win probability and becomes increasingly sharp, approaching the true

indicator function as k increases. During this phase, I calculate the gradient estimates

using a mini-batch approach, using only 50 simulation draws per gradient evaluation, while

using M = 1000 draws to evaluate the objective function itself. This technique balances

computational efficiency with the need for accurate gradient estimates.

In the second step, I refine the initial solution using an iterative best-response (IBR)

procedure with k fixed at 50 and use all M draws to calculate the gradient. However, given

the higher number of draws used for the gradient, I limit M = 500. In each step of the

IBR procedure, one candidate’s strategy is held fixed while the other’s optimal response is

found using the Adam optimizer. To enhance stability, the IBR updates are damped using

a mixing parameter, such that the strategy for the next iteration is a weighted average of

the current strategy and the newly computed best response.

Figure 7 visualizes the convergence of this algorithm for each party in each election cycle.

Each plot shows the infinity norm of the difference between a campaign’s effort allocation

vector across successive iterations, with the y-axis on a logarithmic scale to better visualize

the approach to zero. The left panel of each plot shows the Warmup Phase using the

simultaneous gradient-based optimizer with annealing, while the right panel displays the

subsequent Iterative Best Response (IBR) Phase. For each election year (2008, 2012, 2016,

and 2020), there are two plots: one for the Democratic candidate (left) and one for the

Republican candidate (right).

As the plots demonstrate, the norm difference consistently trends downward across all

scenarios, and by the final iterations it typically falls below 10−4. For comparison, the

normalized total budget constraint is between 20-30. This indicates that the campaign effort

allocations are stabilizing, suggesting convergence to an equilibrium strategy profile under
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the national popular vote system.
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Figure 7: Convergence of Campaign Effort under a National Popular Vote System

Notes: The figure visualizes the convergence of the computational algorithm used to find the
equilibrium effort allocations under the national popular vote system. Each plot displays the
infinity norm of the difference between a campaign’s effort allocation vector across successive
iterations, with the y-axis on a logarithmic scale. The eight panels show the results for each
party (Democratic, Republican) in each election cycle (2008, 2012, 2016, 2020). Each plot
is split into two phases: “Phase 1: Warmup” uses a simultaneous gradient-based optimizer
with an annealing schedule, while “Phase 2: IBR” refines the solution using an iterative
best-response (IBR) procedure. The consistent downward trend in the norm difference,
which typically falls below 10−4 by the final iteration, indicates that the campaign effort
allocations are stabilizing and have converged to an equilibrium strategy profile.
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