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Abstract
Voter turnout is substantially higher in battleground than in non-battleground

states during U.S. presidential elections. It is unclear whether this gap reflects an or-
ganic response to closer contests or a manufactured outcome of campaign activity. Ex-
isting research treats these channels separately, overlooking the feedback whereby cam-
paign effort shapes voter preferences, alters electoral competitiveness, and in turn af-
fects participation. I develop and estimate a unified structural model in which turnout,
competitiveness, and strategic effort are jointly determined in equilibrium. The model
is estimated using county-level data from the 2008–2020 presidential elections. Valida-
tion exercises show the model’s predicted competitiveness effects match reduced-form
estimates and that its implied effort allocations align closely with observed advertis-
ing patterns. The results indicate that higher competitiveness and strategic effort
together fully explain the 6.1 percentage point turnout gap between battleground and
non-battleground states, with roughly one-third attributable to competitiveness itself
and two-thirds to candidate effort. I use the model to assess the efficiency of this mo-
bilization, finding a marginal cost of about $250 per additional voter, though average
costs are much smaller at around $150 per vote. As an application, I simulate a pub-
lic financing reform that caps campaign budgets, finding that tighter spending limits
increase competitiveness but reduce overall turnout.
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1 Introduction

Voters determine which candidates are elected and, in turn, which policies are enacted.

Yet despite their centrality to democratic governance, we still lack a clear account of what

motivates citizens to participate in elections. Without such understanding, it is difficult

to predict how public preferences translate into electoral outcomes or how institutional or

strategic interventions affect turnout. Two standard perspectives dominate. In voter-centric

models, closer races increase the instrumental value of voting, encouraging participation. In

candidate-centric models, competitiveness induces campaigns to intensify their effort, which

shifts voter preferences, again boosting turnout. Both perspectives imply that participation

rises with competitiveness, though through distinct channels.

Nowhere is this ambiguity more consequential than in U.S. presidential elections, where

turnout is consistently higher in “battleground” states in which margins are narrow and

campaign activity is intense (see Table 1). How much of this difference in turnout reflects

competitiveness itself, and how much is a product of campaign effort? The distinction

matters not only for understanding turnout, but also for policy evaluation. Consider a

public financing reform that caps and equalizes spending. Equalized budgets could heighten

competitiveness and boost turnout, yet reduced spending may weaken mobilization and

depress participation. A credible assessment of such reforms requires a framework that

jointly accounts for both channels and quantifies their relative contributions.

This paper develops and estimates a structural model that addresses this challenge. On

the voter side, participation depends on costs, partisan leanings, and the competitiveness of

the race. On the candidate side, campaigns allocate resources strategically, with effort di-

rectly shifting voter preferences and indirectly altering the competitiveness of the race. This

unified framework disentangles the roles of competitiveness and campaign effort in driving

turnout and provides a basis for counterfactual policy analysis. The model is estimated

using county-level data from the 2008–2020 U.S. presidential elections. Although campaign

effort is not directly observed, the model infers it as a latent variable consistent with candi-
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dates’ best responses. The framework also ensures equilibrium consistency: competitiveness

governs perceived voting efficacy, which shapes turnout. Turnout, in turn, feeds back into

determining the competitiveness of the race.

Table 1: Battleground vs. Non-Battleground States

Battleground Non-Battleground

Turnout Rate (%) 62.6 56.5
Avg. Margin (%) 2.5 10.2
TV Ad Share (%) 87 13

Notes: Battleground states are defined as the top 10
states by combined Democratic and Republican televi-
sion advertising expenditures in each presidential elec-
tion year (2008, 2012, 2016, 2020). Turnout is measured
as the share of the voting age population who cast a bal-
lot for the Republican or Democratic candidate in the
presidential election.

Identification rests on two elements. First, the economic structure separates effort, which

shifts relative candidate utilities directly, from competitiveness, which alters perceived voting

efficacy and thereby changes the effective cost of voting. Equilibrium conditions link these

components by jointly determining turnout, competitiveness, and candidate effort. Second,

exclusion restrictions assign covariates either to partisan preferences (e.g. demographics) or

to voting costs (e.g. registration laws), allowing the two channels to be separately identified.

Simulations validate this approach, showing that the model can recover the true parameters

from synthetic data.

I provide two forms of external validation. First, a border discontinuity design shows the

model’s predicted turnout response to competitiveness closely matches new quasi-experimental

estimates. Second, the model’s predicted allocation of effort aligns closely with observed

campaign spending patterns.

The model shows that the 6.1 percentage point turnout gap between battleground and

non-battleground states is fully explained by a combination of the direct effect of competi-

tiveness on individuals’ perceived voting efficacy and the mobilization generated by strategic

campaign effort. Decomposition shows that roughly one-third of the gap is attributable to
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differences in voting efficacy, while the remaining two-thirds are driven by mobilization.

Having established the core mechanisms, I turn to their implications. First, the model

sheds light on the puzzle of why campaigns spend so heavily on mobilization despite small

marginal effects in field experiments (Spenkuch and Toniatti, 2018; Aggarwal et al., 2023;

Bär, Pröllochs, and Feuerriegel, 2025; Sides, Vavreck, and Warshaw, 2022; Kalla and Broock-

man, 2018). Early spending mobilizes the most responsive voters. As effort accumulates,

marginal returns diminish, but neither candidate can retreat without ceding advantage.

Most reduced-form studies measure spending effects in these saturated environments,

where additional outreach has limited impact. The model, by contrast, captures the full

equilibrium consequences of strategic escalation, which are quite large, adding nearly three

million votes per cycle and raising turnout by 4 to 5 percentage points in pivotal states.

Second, I use the framework to examine a public financing reform that caps campaign

budgets at the inflation-adjusted equivalent of the 2008 public grant. The reform highlights

a central trade-off: spending caps make races more competitive, raising perceived voting

efficacy, but they also reduce mobilization. The net effect is a decline in participation, as

lower spending outweighs the effects of intrinsic competitiveness on turnout.

The existing literature has typically examined the roles of electoral competitiveness and

campaign effort in isolation. One class of theories focuses on the effects of competitiveness,

whereby voters are motivated by the instrumental value of their vote in a close race (Downs,

1957; Palfrey and Rosenthal, 1983). A separate class of theories emphasizes strategic ef-

fort, where candidates either mobilize supporters through costly outreach (Herrera, Levine,

and Martinelli, 2008) or influence voter choice by targeting resources to undecided voters

(Lindbeck and Weibull, 1987; Dixit and Londregan, 1996). This separation has continued

into structural models of voter turnout. Candidate-focused models such as Strömberg (2008)

and Shachar and Nalebuff (1999) endogenize campaign effort but assume full turnout. Voter-

centric models (Coate and Conlin, 2004; Coate, Conlin, and Moro, 2008; Kawai, Toyama,

and Watanabe, 2021; Degan and Merlo, 2011) allow turnout to respond to preferences or
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voting costs, but treat campaign behavior as exogenous.

However, empirical evidence indicates that both mechanisms matter. Closer contests

increase participation (Bursztyn et al., 2024; Levine and Palfrey, 2007; Duffy and Tavits,

2008), while field experiments and observational studies show that campaign effort also

raises turnout (Gerber, 2004; Nickerson, 2006; Enos and Fowler, 2018). Models that omit

one channel risk misattributing its effects to the other and understate the extent of their in-

teraction. In practice, this means not only that estimates of competitiveness or effort may be

misspecified, but also that the dynamic feedback between them is lost: when a trailing can-

didate intensifies effort, the margin narrows, raising competitiveness and amplifying turnout;

when a frontrunner expands spending, the margin widens, dampening competitiveness and

reducing the return to further effort.

By integrating voter turnout and campaign strategy within a common framework, this

paper bridges two literatures that have traditionally been studied in isolation. The framework

clarifies the sources of higher participation in battleground states and provides a tractable

tool for evaluating institutional reforms in U.S. presidential elections and beyond.

The paper proceeds as follows. Section 2 presents the model, detailing voter and candi-

date behavior. Section 3 describes the estimation strategy. Section 4 outlines the data used

in the analysis, including campaign spending and turnout measures. Section 5 presents the

main results. Section 6 evaluates the model’s fit to the data, comparing predicted spending

patterns to observed data, as well as the model’s predicted turnout responses to changes

in competitiveness to reduced-form estimates. Section 7 explores the implications for both

voter behavior and campaign strategy. Section 8 summarizes the main findings and outlines

directions for future research.
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2 The Model

I develop a game-theoretic model of U.S. presidential elections with two sets of actors: vot-

ers and candidates, a Democrat (D) and a Republican (R). The candidates are endowed

with campaign budgets and allocate resources across states to maximize their probability of

winning the Electoral College. This requires securing 270 electoral votes. Each state s ∈ S

gives its assigned electoral votes ls to a candidate using a first-past-the-post election. An

individual state s is partitioned into counties indexed by js ∈ Js, where
∑

js∈Js
wjs = 1 and

wjs denotes the county’s share of the state’s voting-eligible population.1

Voter and candidate decisions are interdependent. Voters decide whether and for whom

to vote based on their partisan preferences, participation costs, and the perceived efficacy of

their vote, which is determined by state-level competitiveness. Candidates, in turn, strate-

gically allocate their campaign effort to influence these partisan preferences. The following

sections detail the behavior of each actor, beginning with the voter’s decision calculus 2.1

before turning to the candidate’s equilibrium strategy 2.2.

2.1 Voters

2.1.1 Baseline Preferences

Individuals begin with baseline preferences for the two candidates. Let ∆ũijs denote the

pre-campaign utility differential between candidate R and candidate D for individual i in

county js of state s. This is estimated using county-level demographic covariates Xµ
js
, as well

as unobserved preference shocks. A positive value indicates a preference for R; a negative

value indicates a preference for D. Individuals with ∆ũijs > 0 are classified as aligned with

R, and those with ∆ũijs < 0 as aligned with D. The differential is given by:

1For expositional clarity I present the model for a single election year and omit the time index t. In
estimation (Section 3.3), the model is applied separately to each presidential election from 2008 to 2020 and
the likelihood is pooled across years.
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∆ũijs = µ(Xµ
js
)− ηjs − δs − ϵijs ,

where µ(Xµ
js
) captures the average partisan lean of county js. For notational convenience,

I write µjs when the argument is clear. The remaining terms introduce heterogeneity across

counties, states, and individuals. Specifically, ηjs ∼ N (0, σ2
j ) is a county-level deviation

from the baseline; δs ∼ N (0, σ2
s) is a common statewide shock; and ϵijs ∼ N (0, 1) reflects

idiosyncratic preference noise at the individual level. The state and county-level shocks

capture systematic factors that shift attitudes toward candidate R uniformly across the state

or county, such as gubernatorial popularity, salient statewide policy, or national partisan

narratives disproportionately affecting a given state or county. All shocks are mean-zero

and independently distributed. Uniform national trends, such as presidential approval or

macroeconomic sentiment, are absorbed into µ(Xµ
js
). This term captures both local partisan

lean and any constant shift in national preferences within a given election cycle.

Positive realizations of the shocks reduce support forR, shifting voters towardD. Because

each component enters symmetrically and additively, the county fixed effect µ(Xµ
js
) represents

the expected pre-campaign utility advantage of candidate R in county js.

2.1.2 Effect of Campaign Effort

Campaigns influence turnout through two mechanisms: they raise the utility differential

among aligned voters (mobilization) and reduce it among opponents (persuasion). However,

these effects need not be symmetric. For example, campaign rallies may energize supporters

while having little effect on the opposing side. To flexibly capture both channels, I define

the net utility effect of candidate q and −q’s effort as:

m(esq, es−q) = θe1/γsq − ψθe
1/γ
s−q, (1)

where q ∈ {D,R} indexes the candidate and −q the opponent. The function is increasing
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and concave in own effort and decreasing in the opponent’s effort. The scale parameter

θ > 0 governs the overall efficacy of campaign effort, γ > 1 captures diminishing returns,

and ψ ∈ [0, 1] captures the strength of persuasion. This flexible form nests two polar cases:

when ψ = 0, campaigns affect only aligned voters (pure mobilization); when ψ = 1, they

exert equal and opposite effects on both sides (full persuasion). The value of esD and esR

denote the per-capita effort levels and are solved endogenously in equilibrium, as described

in Section 2.2.

The overall impact of the campaign environment may differ across counties. Beyond

the direct effect of spending, some counties may become more polarized or more moderate

as the campaign unfolds. To capture this heterogeneity, I introduce a county-specific shock

ζjs ∼ N (0, σ2
j ) that uniformly shifts the post-campaign utility differential in county js of state

s, pushing the electorate toward either stronger partisan alignment or greater moderation,

holding effort fixed. This term is distinct from baseline preference shocks but drawn from

the same distribution, reflecting a common source of unobserved local heterogeneity.

Post-campaign utility differentials are given by:

∆uijs =


min {−m(esD, esR) + ∆ũijs + ζjs , 0} if ∆ũijs < 0,

max {m(esR, esD) + ∆ũijs − ζjs , 0} if ∆ũijs ≥ 0.

(2)

So long as m(esD, esR) > 0, the utility differential moves in favor of the aligned candidate.

A positive realization of ζjs reduces its absolute magnitude, shifting the electorate toward

moderation, while a negative realization increases it, amplifying partisan alignment.

To enforce the model’s assumption of fixed partisan alignment, I truncate the post-

campaign utility differential so that it cannot cross zero: for voters initially aligned with

candidate D (i.e., ∆ũijs < 0), the post-campaign differential is constrained to remain non-

positive, while for voters aligned with R it must remain non-negative. This restriction pre-

vents large effort imbalances or large realizations of ζjs from inverting voter types, thereby
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maintaining consistency with the fixed-type classification. The truncation is applied to the

post-campaign utility differential, not to the individual shock ζjs , which remains normally

distributed. Substantively, this assumption reflects evidence that campaign activity primar-

ily affects mobilization and demobilization of existing supporters rather than persuading the

opposing side to switch allegiances (Schuster (2020)).

2.1.3 Voting Decision and Perceived Efficacy

Voters face a cost of voting, c(Xc
js), that varies by county. The covariates Xc

js capture

demographic and institutional factors that influence voting costs and are distinct from those

affecting baseline preferences. For clarity I write cjs when the argument is clear. A voter

turns out only if the expected benefit of voting exceeds this cost. The expected benefit

depends on perceived voting efficacy at the state level, denoted p(κs).

Rather than literal pivot probabilities, I model perceived voting efficacy as a smooth

function of electoral competitiveness. The term perceived voting efficacy follows Kawai,

Toyama, and Watanabe (2021), who introduce it as a reduced-form object. In contrast, I

model efficacy as a structural equilibrium object: it is jointly determined with turnout and

competitiveness, and its shape is estimated from the data rather than imposed ex ante.

Competitiveness, κs, is defined as the ratio of the losing candidate’s vote share to the

winner’s:

κs ≡


σsD
σsR

, if σsR > σsD,

σsR
σsD

, otherwise,

κs ∈ (0, 1]. (3)

The terms σsD and σsR are population-weighted turnout shares for candidates D and R in

state s, respectively:

σsD ≡
∑
js∈Js

wjsσjsD, σsR ≡
∑
js∈Js

wjsσjsR.
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I assume that p(κs) is strictly increasing in electoral competitiveness, reaching its maximum

when the election is a tie. In practice, I model p(κs) as a scaled logistic function:

p(κs) =
p̃(κs)− p̃(0)

p̃(1)− p̃(0)
where p̃(κs) =

1

1 + exp (−α1(κs − α2))
.

The rescaling normalizes p(κs) so it remains bounded between 0 and 1. When κs = 0, the

election is a landslide and p(κs) = 0; when κs = 1, the election is a perfect tie and p(κs) = 1.

The logistic specification is flexible enough to capture a wide range of turnout responses

to competitiveness (Figure 1). In the limit as α1 → ∞ and α2 → 1, the function approaches

a step, reproducing the classical pivotal-voter logic in which turnout rises only at exact ties.

Smaller values of (α1, α2) generate smoother, more gradual responses and shift the midpoint,

consistent with the idea that voters cannot precisely compute pivot probabilities and instead

rely on heuristics about competitiveness. Such comparative statics are consistent with lab-

oratory evidence that individuals tend to overestimate their influence in close elections yet

still adjust turnout in response to competitiveness (Levine and Palfrey (2007) and Duffy and

Tavits (2008)).

A key feature of my approach is to estimate (α1, α2) from the data, allowing the efficacy

curve to be disciplined empirically rather than imposed ex ante. In this way, the model nests

competing microfoundations of turnout within a common structural framework.

Using the perceived voting efficacy p(κs), an individual votes if the expected benefit from

voting exceeds the cost of voting. The benefit is the product of two components: the utility

differential between the two candidates, |∆uijs|, and the perceived efficacy of the vote, p(κs).

The efficacy term, p(κs) represents a voter’s subjective belief in their vote’s importance.

It serves as a behaviorally plausible and empirically tractable analog to the classical pivot

probability derived in the canonical instrumental voter model (see Appendix B.1 for details).

An individual in county js votes for D if ∆ũijs < 0 and:
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Figure 1: Perceived voting efficacy as a function of electoral competitiveness
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Notes: The efficacy function p(κs) is a rescaled logistic with steepness α1 and midpoint α2.
Each panel fixes α1 at a different level, showing how higher values create a sharper, more
step-like response to competitiveness κs. Within each panel, colored lines vary α2, which
shifts the midpoint as shown in the color bar.

p(κs) · |∆uijs| > cjs ,

and votes for R if ∆ũijs ≥ 0 and:

p(κs) ·∆uijs > cjs .

Otherwise, the individual abstains.

2.1.4 Closed-Form Expressions for Turnout

Let H(·) denote the cumulative distribution function of the idiosyncratic shock ϵijs . The

fraction of individuals in county js who vote for candidate D is:

σjsD = H

(
m(esD, esR)− µ(Xµ

js
)−

c(Xc
js)

p(κs)
+ ηjs + δs − ζjs

)
, (4)

and the fraction voting for R is:
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σjsR = H

(
m(esR, esD) + µ(Xµ

js
)−

c(Xc
js)

p(κs)
− ηjs − δs − ζjs

)
. (5)

These expressions are derived by finding the threshold for the idiosyncratic shock ϵijs

that induces an individual to vote, which requires assuming an interior solution for turnout

(i.e., that not all partisans participate). Appendix B.2 provides the detailed derivation.

Finally, let σjsA denote the abstention rate in county js, with

σjsD + σjsR + σjsA = 1.

These county-level voting shares and abstention rates depend on perceived voting efficacy,

which in turn is a function of state-level turnout aggregates. Because p(κs) depends on

aggregate turnout, and turnout depends on individual voting decisions, equilibrium voting

shares are determined through a fixed-point system linking individual behavior and state-

level aggregates.

2.1.5 Overview of Voter Decision Mechanism

Figure 2 illustrates the model’s voter decision as a three-stage process. First, individu-

als begin with baseline preferences, represented by the distribution of pre-campaign utility

differentials (∆ũijs). Second, campaign effort and local shocks transform these into post-

campaign utility differentials (∆uijs). Third, individuals decide whether to vote based on

their post-campaign utility, the cost of voting (cjs), and perceived voting efficacy (p(κs)).

The figure illustrates two distinct scenarios that can arise during the second stage. The

top row depicts a “Gap Scenario,” which occurs when the campaign mobilization effects

(m) are larger than the county-specific campaign shock (ζjs). This polarizes the electorate,

creating an empty space in the post-campaign utility distribution around the indifference

point of zero. The bottom row depicts a “Point Mass Scenario,” which occurs when a large
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shock pushes voters toward indifference. This causes post-campaign utility to be truncated

and collected at zero.

Figure 2: Equilibrium turnout and campaign effort within a county

Notes: This figure illustrates the model’s three-stage voter decision mechanism under two
distinct scenarios. The top row depicts a “Gap Scenario,” which occurs when the campaign
mobilization effects (m) are larger than the county-specific campaign shock (ζjs). This
polarizes the electorate, creating an empty space in the post-campaign utility distribution
around the indifference point of zero. The bottom row depicts a “Point Mass Scenario,” which
occurs when a large shock pushes voters toward indifference, where their post-campaign
utility is truncated and collects at zero. In both rows, the first panel shows the baseline
distribution of pre-campaign utility (∆ũijs), the second panel shows the transformed post-
campaign utility distribution (∆uijs), and the third panel illustrates the turnout decision for
R-aligned voters by showing which fraction of the distribution (shaded green) exceeds the
effective cost of voting (cjs/p(κs)).

2.2 Candidates

2.2.1 Candidates’ Objective Function

Each candidate allocates a fixed, exogenously given amount of resources to maximize the

probability of winning the election. Let ED and ER denote the total campaign resources

13



available to candidates D and R, respectively.

To reflect the reality of U.S. presidential elections and to reduce computational complex-

ity, I assume that certain states are safe for each party and receive zero campaign effort.

Let BG denote the set of battleground states where outcomes are uncertain and candidates

allocate positive effort. The safe states contribute their electoral votes automatically to the

respective candidate’s total. Let EVD and EVR denote the number of electoral votes secured

by candidates D and R from safe states, respectively.2

Candidates concentrate their campaign effort in battleground states and choose allo-

cations to maximize their probability of winning the Electoral College. In making these

decisions, they account for how voter turnout responds to campaign effort and perceived

electoral competitiveness. Specifically, they consider the distribution of partisan preferences

across counties, the cost of voting, and how these factors jointly shape turnout through the

perceived efficacy function p(κs).

While candidates do not observe the realization of local preference shocks ηjs , δs, ζjs , they

are assumed to know their distribution, along with the functional form of turnout behavior.

This allows them to compute expected vote shares as a function of both their own and their

opponent’s campaign effort. Using these expectations, candidates allocate resources across

states to maximize the probability that their total electoral vote count meets or exceeds the

270-vote threshold required to win.

Candidate D’s problem can be written as:

max
{esD}s∈BG

Pr

(
EVD +

∑
s∈BG

Dsls ≥ 270

)
subject to

∑
s∈BG

ns · esD ≤ ED,

where ns is the voting age population in state s, ls denotes the number of electoral votes

2For empirical support for the battleground / non-battleground state distinction, see, e.g., https://
fairvote.org/report/2008-s-shrinking-battleground-and-its-stark-impact-on-campaign-activity/

and author calculations based on data from the Wesleyan Media Project, which show that over 87% of
television advertising and 90% of campaign visits during the 2008–2020 presidential elections occurred in
just 10 states on average.
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in state s, and Ds = 1 if candidate D wins state s, and zero otherwise.3

The probability that candidate D wins state s, denoted πs(esD, esR), is the probability

that D’s aggregate vote share exceeds that of R, conditional on the candidates’ effort levels:

πs(esD, esR) ≡ Pr (σsD(esD, esR) > σsR(esD, esR)) .

Here, σsD(esD, esR) and σsR(esD, esR) denote the state-level turnout shares for D and R,

respectively, defined as population-weighted averages of county-level turnout. From each

candidate’s perspective, these aggregates are random variables: they depend on campaign

effort as well as unobserved preference shocks δs, ηjs , and ζjs , whose distributions are known

but whose realizations are not.

Computing the exact distribution of total electoral votes is intractable due to the high-

dimensional integration over state and county-specific shocks. To overcome this, I approxi-

mate the distribution of the total electoral votes obtained by candidate D using the Central

Limit Theorem.4 Specifically,
∑

s∈BGDsls is approximated by a normal distribution with

mean and variance:

∑
s∈BG

Dsls ∼ N

(∑
s∈BG

πs(esD, esR)ls,
∑
s∈BG

πs(esD, esR)(1− πs(esD, esR))l
2
s

)
.

Under this approximation, candidate D’s objective function becomes:

max
{esD}s∈BG

Φ

( ∑
s∈BG πs(esD, esR) · ls − (270− EVD)√∑
s∈BG πs(esD, esR) [1− πs(esD, esR)] l2s

)
(6)

subject to
∑
s∈BG

ns · esD ≤ ED

3I abstract from states like Maine and Nebraska, which allocate electoral votes by congressional district.
4Strömberg (2008) follows a similar approach in approximating expected electoral vote counts under

conditional independence across states. Simulations in Appendix B.4 confirm that this approximation is
accurate even when uncertainty is limited to battleground states.
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where Φ(·) denotes the cumulative distribution function of the standard normal distri-

bution.

Similarly, candidate R’s objective function is:

max
{esR}s∈BG

Φ

(∑
s∈BG [1− πs(esD, esR)] · ls − (270− EVR)√∑

s∈BG πs(esD, esR) [1− πs(esD, esR)] l2s

)
(7)

subject to
∑
s∈BG

ns · esR ≤ ER

2.2.2 Calculating the Probability of Winning a State

The probability a candidate wins a state depends on individual-level voting decisions. For

candidate D, the probability of winning state s is:

πs(esD, esR) = Pr

(∑
js

wjsσjsD(esD, esR)−
∑
js

wjsσjsR(esD, esR) > 0

)
(8)

where, following the structure from Section 2.1.4,

σjsD(esD, esR) = H

(
m(esD, esR)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
,

σjsR(esD, esR) = H

(
m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
.

There are two main challenges in directly solving for the probability in (8). First, the

probability depends on three random components: the county-specific shocks ηjs and ζjs ,

and the state-specific shock δs. Second, the county-level turnout rates σjsD and σjsR depend

endogenously on the statewide aggregates σsD and σsR.

To simplify, I approximate the probability of winning a state by assuming that candidates

treat county-level shocks ηjs and ζjs as negligible relative to the state-level shock δs. This

is justified when the variance of county-level shocks is small compared to the variance of

16



the state-level shock and there are many counties in the state, as shown in Appendix B.5.

Fortunately, the recovered parameters in Section 5 match this condition.

Under this approximation, define the adjusted county-level turnout shares as:

σ̃jsD(esD, esR) ≡ H

(
m(esD, esR)− µjs −

cjs
p(κ̃s)

+ δs

)
,

σ̃jsR(esD, esR) ≡ H

(
m(esR, esD) + µjs −

cjs
p(κ̃s)

− δs

)
,

where κ̃s is identical to equation (3) but uses the adjusted state-level turnout shares calcu-

lated as σ̃sD ≡
∑

js
wjsσ̃jsD and σ̃sR ≡

∑
js
wjsσ̃jsR.

The probability that the Democratic candidate wins state s is then approximated by:

πs(esD, esR) ≈ Pr

(∑
js

wjsσ̃jsD(esD, esR)−
∑
js

wjsσ̃jsR(esD, esR) > 0

)
.

Let δ̂s be the threshold value of δs at which the weighted support for D and R exactly

balance, following the threshold-based approach in Bouton et al. (2023):

∑
js

wjsH

(
m(esD, esR)− µjs −

cjs
p(κ̃s)

+ δ̂s

)
=

∑
js

wjsH

(
m(esR, esD) + µjs −

cjs
p(κ̃s)

− δ̂s

)
. (9)

When δs > δ̂s, candidate D wins the state; otherwise, candidate R wins. Thus, condi-

tional on effort profiles (esD, esR), the probability that candidate D wins state s is:

πs(esD, esR) ≈ 1− F (δ̂s) ≡ π̃s(esD, esR), (10)

where F (·) denotes the cumulative distribution function of the state-level shock δs. Substi-

tuting π̃s(esD, esR) for πs(esD, esR) yields the following objective functions:
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For candidate D:

max
{esD}s∈BG

Φ

( ∑
s∈BG π̃s(esD, esR)ls − (270− EVD)√∑
s∈BG π̃s(esD, esR)(1− π̃s(esD, esR))l2s

)
(11)

subject to
∑
s∈BG

ns · esD ≤ ED,

and for candidate R:

max
{esR}s∈BG

Φ

(∑
s∈BG(1− π̃s(esD, esR))ls − (270− EVR)√∑

s∈BG π̃s(esD, esR)(1− π̃s(esD, esR))l2s

)
(12)

subject to
∑
s∈BG

ns · esR ≤ ER.

2.2.3 Equilibrium Strategies

Given the approximated win probabilities π̃s(esD, esR), I solve for a pure-strategy Nash equi-

librium in campaign effort. Each candidate q ∈ {D,R} chooses an effort allocation {e∗s,q}s∈BG

that maximizes their probability of winning the Electoral College, taking the opponent’s al-

location as given (see equations (11) and (12)).

Importantly, each candidate internalizes how their effort affects turnout via the perceived

voting efficacy channel, and thus indirectly affects the probability of winning each state.

Equilibrium conditions correspond to the Karush-Kuhn-Tucker (KKT) system associated

with each candidate’s constrained optimization problem. I solve this system jointly for both

candidates using an iterative root-finding algorithm, updating effort vectors until convergence

to a fixed point at which neither candidate has a profitable deviation. Simulations that

hold county characteristics and structural parameters fixed, and repeatedly vary the initial

effort allocations, consistently converge to the same solution, indicating that the equilibrium

allocation is unique for a given set of budget constraints and electoral environment.
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2.3 Model Equilibrium and Timing

The model’s equilibrium is defined by the interaction between candidates’ strategic effort

choices and the resulting voter turnout. It consists of two interconnected stages.

First, observing baseline partisan preferences and county-level voting costs, candidates

choose their effort allocations {e∗s,D, e∗s,R}s∈BG in a pure-strategy Nash equilibrium. Because

the relevant shocks are not yet realized, candidates maximize their expected probability of

winning the Electoral College, taking expectations over the known distribution of the state-

level shock δs. In deciding their effort allocations, candidates take into account how their

efforts shape both the intensity of voter preferences and the perceived efficacy of voting, for

any given realization of δs.

Once candidate strategies are set and the state- and county-level shocks are realized, a

voter-turnout equilibrium is reached. This equilibrium is a fixed point in state-level com-

petitiveness κs: voters’ turnout decisions, shaped by their perceived efficacy p(κs), generate

aggregate vote shares that reproduce an identical level of competitiveness κs.

3 Estimation

3.1 Estimation Framework

I estimate the model using county-level vote shares from U.S. presidential elections between

2008 and 2020. The parameters of interest are a vector of coefficients,

β =
(
βµ, βc, βα1 , βα2 , βθ, βj, βs

)
,

which govern county-level heterogeneity in partisanship and voting costs, the curvature of

the pivotality function, the responsiveness of turnout to campaign effort, and the variances

of county- and state-level shocks. All variances are normalized relative to the individual-level

shocks ϵi, which are assumed to follow a standard normal distribution. Two additional pa-
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rameters, γ, the inverse elasticity of campaign production, and ψ, the persuasion parameter,

are estimated by grid search.

For each parameter vector β, the model solution yields equilibrium effort allocations

and state-level closeness. These inputs allow inversion of the turnout equations to obtain

the implied preference shocks. Let η̂jst, ζ̂jst, and δ̂st be the inferred county- and state-level

shocks at time t. The likelihood is then maximized over β:

β̂ = argmax
β

2020∑
t=2008

∑
s∈S

∑
js∈Js

log ϕ
(
η̂jst, ζ̂jst, δ̂st

∣∣ β; Xµ
jst
, Xc

jst

)
,

where ϕ(·) is the joint density of the inferred shocks under the model’s Gaussian assumptions.

When evaluating this likelihood function, the effort terms (esD, esR) are treated differently

depending on the state’s classification. For states identified as battlegrounds (see section 4.4),

effort is the endogenously solved equilibrium value. For all non-battleground states, effort is

set to zero, consistent with the model’s simplifying assumption.

A central advantage of the framework is that state-level effort does not enter as a mea-

sured regressor; instead, effort is solved in equilibrium subject to exogenous party budgets.

This mitigates concerns about endogeneity in reduced-form designs. The remainder of this

section details the parameters of interest, the estimation procedure, and validation of the

model’s identification.

3.2 Parameters

Table 2 summarizes the structural parameters and shows how each is recovered from the

estimated coefficient vector β. County-level covariates Xµ
jst

and Xc
jst capture partisanship

fundamentals (e.g. race, education) and voting costs (e.g. polling-place congestion, mail-

in availability), respectively. Applying the exponential function to cjs, θ, and the shock

variances ensures they are positive. For the voting-efficacy midpoint α2, I use the logistic

function so that α2 ∈ (0, 1). The campaign-effort parameters θ, γ, and ψ jointly govern how
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spending translates into voter utility. I estimate θ via maximum likelihood, while γ and

ψ are selected by grid search. Preliminary simulations indicated that jointly estimating all

three parameters led to local minima and weak identification, particularly for ψ. To ensure

stable estimation, I fix γ and ψ over a discrete grid and estimate θ for each combination,

selecting the pair that yields the highest likelihood. The final specification uses γ = 2 and

ψ = 0.25.

Table 2: Structural parameters and their link to estimated coefficients

Parameter Economic interpretation Mapping from β

Partisanship and cost

µjst Baseline utility advantage of R in county js β⊤
µtX

µ
jst

cjs Cost of voting in county js exp
(
β⊤
c X

c
jst

)
Perceived voting efficacy

α1 Logistic parameter (steepness) exp(βα1)
α2 Logistic parameter (midpoint) 1/(1 + exp(−βα2))

Campaign-effort technology

θ Scale of utility gain per $ spent exp(βθ)
γ Concavity of campaign production function Grid search: γ ∈ {2, 3, 4, 5}
ψ Persuasion parameter Grid search: ψ ∈ {0.0, 0.1, 0.25,

0.5, 0.75, 1.0}
Aggregate shocks

σj Std. dev. of county-level shock exp(βj)
σs Std. dev. of state-level shock exp(βs)

Notes: All exponentiated mappings impose positivity. Covariates in Xµ
js,t

include demographic composi-
tion. Covariates in Xc

js,t
include polling-place congestion, mail-in options, voter ID laws, median income,

and employment rate. The campaign-effort parameters γ and ψ are selected by grid search, while all
other coefficients are estimated by maximum likelihood. The partisanship coefficients βµt are estimated
separately for each election year. All other parameters are estimated using pooled data across all years.

Importantly, I assume that the behavioral parameters (α1, α2, θ, γ, ψ) and the shock vari-

ances (σj, σs) are constant across election cycles. Likewise, the cost-function coefficients βc

are applied uniformly across years. In contrast, the partisanship component µjst is modeled

as µjst = β⊤
µtX

µ
jst
, with both the covariates Xµ

jst
and the coefficients βµt allowed to vary by

election year. This structure captures evolving patterns of local partisanship while holding

the underlying behavioral model fixed.
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3.3 Estimation Procedure

The structural parameters are estimated by maximum likelihood.5 The estimation procedure

inverts the model’s turnout equations to recover the unobserved preference shocks (ηjs , ζjs , δs)

that rationalize the observed vote shares (σjsD, σjsR) in equilibrium.

For county j in state s, under an interior solution, the observed Democratic and Repub-

lican turnout shares satisfy:

σjsD = H
(
m(esD, esR)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
,

σjsR = H
(
m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
,

where H(·) denotes the standard normal CDF. Inverting the CDF isolates the latent thresh-

olds:

H−1(σjsD) = m(esD, esR)− µjs −
cjs

p(κs)
+ ηjs + δs − ζjs , (13)

H−1(σjsR) = m(esR, esD) + µjs −
cjs

p(κs)
− ηjs − δs − ζjs . (14)

Adding and subtracting (13) and (14) yields closed-form expressions for ζjs and the

combined shock ηjs + δs:

ζjs =
1
2

[
−H−1(σjsD)−H−1(σjsR) +m(esD, esR) +m(esR, esD)− 2

cjs
p(κs)

]
, (15)

ηjs + δs =
1
2

[
H−1(σjsD)−H−1(σjsR)−m(esD, esR) +m(esR, esD) + 2µjs

]
. (16)

Since ηjs is i.i.d. with mean zero, averaging (16) across counties in state s yields an

5Throughout I suppress the time index t and treat a single election as given. Coefficients for µ are esti-
mated separately by year, allowing the influence of demographic factors to vary across elections. Coefficients
for c are held fixed over time, though the covariates themselves (e.g. polling-place density, voting rules) may
change across years. The structural parameters (α1, α2, θ, γ, ψ, σj , σs) are estimated using pooled data across
all years.
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unbiased estimator for the state-level preference shock:

δ̂s =
1

|Js|
∑
js

1
2

[
H−1(σjsD)−H−1(σjsR)−m(esD, esR) +m(esR, esD) + 2µjs

]
. (17)

Subtracting δ̂s from (16) recovers the county-specific deviation η̂js .

The direct inversion is valid so long as the observed vote shares for D (R) is less than the

fraction of voters aligned withD (R) in the county, as well as the assumption that all observed

vote shares lie strictly between 0 and 1.6 For any such share, the inverse CDF H−1(·) is

finite and uniquely defined, allowing one to recover the latent thresholds in (13)–(14). Using

the estimated equilibrium efforts (esD, esR) these thresholds yield unique estimates of η̂js ,

ζ̂js , and δ̂s via (15), (16), and (17).

For a given coefficient vector β, grid values (γ, ψ), and observed vote shares (σjsD, σjsR),

the implied shocks (η̂js , ζ̂js , δ̂s) are uniquely determined. Under the maintained assumption

that ηjs , ζjs ∼ N (0, σ2
j ) and δs ∼ N (0, σ2

s), the log-likelihood equals the sum of Gaussian

log-densities evaluated at these inferred shocks.

For each trial β, I solve the inner-outer fixed-point system described in Sections 2.2.2 and

2.2.3 to obtain the equilibrium effort profiles of the candidates. Using these efforts, along

with observed county demographics, voting-cost features, and observed vote shares, I recover

the implied shocks and evaluate the Gaussian log-likelihood. This derivation illustrates the

inversion for a single election year. The full estimation maximizes the pooled likelihood across

the 2008–2020 elections, repeating the inversion for each t and aggregating the log-densities

over time.

3.4 Identification

Identification of the structural parameters rests on two features of the model and the data.

6A preliminary check shows that this is violated in seven counties where the number of registered voters
is less than the number of votes cast, likely due to data errors or misreporting. Given this small number of
cases, these counties will be excluded from the final estimation.
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First, the economic structure distinguishes how competitiveness and effort enter the

turnout equations. Campaign effort shifts relative candidate utilities directly throughm(esD, esR),

while competitiveness enters only through the perceived efficacy function p(κs), which scales

voting costs. This separation allows the efficacy parameters (α1, α2) to be identified from

variation in turnout responses to competitiveness, while the effect of campaign effort is iden-

tified from how turnout responds to changes in the distribution of resources across states.

Campaign effort itself is determined endogenously in equilibrium, linking it to competitive-

ness and turnout in a manner consistent with candidates’ strategic incentives.

Second, exclusion restrictions assign covariates either to baseline partisan preferences,

µt(X
µ
js), or to voting costs, c(Xc

js). Demographic and socioeconomic variables such as race

and education shift partisan utilities, while institutional and economic variables such as

polling-place congestion or registration deadlines shift participation costs. This variation

separates baseline political alignment from participation costs, providing leverage to distin-

guish the two channels.

County-level heterogeneity plays a central role. Counties within the same state share

the same competitiveness and campaign environment, but differ in demographics and voting

costs. Comparing turnout across such counties helps identify the effects of µt(X
µ
js) and c(X

c
js)

separately from the common state-level efficacy term p(κs) and campaign effort. Across

states, variation in competitiveness κs and campaign effort allows for identification of the

efficacy function parameters (α1, α2) and the campaign-effectiveness parameters (θ, γ, ψ).

I validate this approach in two ways: (i) by using simulations to show that the estimator

can recover known parameters from synthetic data generated by the model, and (ii) by

inspecting the likelihood surface around the estimated parameters to confirm that it is locally

well-behaved and concave. For more information, see Appendix E.1 and Appendix E.2,

respectively. Together, these exercises provide strong support for the model’s identification.

Finally, it is crucial to distinguish the identification of the model’s structural parameters

from the estimation of coefficients on observable covariates. Covariates enter the model
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through the relationships µjst = β⊤
µtX

µ
jst

and cjst = exp(β⊤
c X

c
jst). Their purpose is not to yield

causal estimates, but rather to allow baseline partisanship and voting costs to vary flexibly

with county characteristics. Accordingly, the coefficients (βµt, βc) are treated as descriptive

summaries of these relationships. The central analytical goal is the identification of the core

structural parameters (α1, α2, θ, γ, ψ, σj, σs) that govern voter and campaign strategy. The

identification of these unobserved parameters relies on the model’s equilibrium structure.

4 Data

The empirical analysis combines county-election information for the 2008, 2012, 2016, and

2020 presidential cycles. Five public sources are merged to obtain (i) official vote totals, (ii)

demographic data, (iii) proxies for the cost of voting, and (iv) campaign budgets. The re-

sulting panel contains 12, 225 county-election observations after minimal sample restrictions

described below.

4.1 Voting Data

County-level Democratic and Republican vote counts are taken from the MIT Election Data

and Science Lab’s harmonized returns. Table 3 summarizes turnout rates by party and geog-

raphy, disaggregating between county- and state-level aggregates and between battleground

and non-battleground states. Two patterns emerge.

First, turnout varies much more across counties than across states. Within battleground

states, the standard deviation of county-level turnout is roughly three times larger than the

state-level standard deviation. A similar pattern holds in non-battleground states, though

the difference is smaller. This dispersion reflects substantial within-state heterogeneity in

partisanship and voting conditions, which motivates the use of county-level data for iden-

tification. Because competitiveness and campaign effort are determined at the state level,

counties within a state share a common strategic environment. The model exploits this
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structure by comparing turnout across counties with identical competitiveness and effort,

but differing in demographics and voting costs. This variation helps separately identify the

effects of baseline utilities, cost shifters, and unobserved shocks on turnout behavior.

Second, state-level turnout is substantially more dispersed in non-battleground states

than in battlegrounds, with the standard deviation nearly three times larger in the former.

This pattern is consistent with the model’s structure, in which turnout depends on effective

voting costs cjs/p(κs). In battleground states, where competitiveness κs is uniformly high,

counties face similar levels of voting efficacy p(κs), resulting in more compressed turnout. In

non-battlegrounds, heterogeneity in κs introduces variation in p(κs), which raises dispersion

in effective costs and thus in turnout. Although differences in partisan preferences µjs or

baseline costs cjs could also contribute, later results show these covariates are similar across

both groups, supporting the interpretation that variation in efficacy is a key source of turnout

dispersion across states.

Table 3: Turnout Summary Statistics by Geography and State Type

Battleground States Non-Battleground States

Level Party Mean Std. Dev. Mean Std. Dev.

County
Democrat 0.260 0.093 0.203 0.102

Republican 0.362 0.097 0.369 0.117

State
Democrat 0.321 0.038 0.262 0.098

Republican 0.307 0.027 0.275 0.092

Notes: County-level figures are unweighted averages across counties; state-level
figures reflect population weighted averages across counties within each state.
Turnout is defined as the fraction of eligible voters casting a ballot for each
party.
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4.2 Demographics Data

Demographic covariates come from the five-year American Community Survey (ACS). For

each election t I use the ACS file whose midpoint year equals t.7 I additionally calculate

the density of the county by taking the land area in kilometers squared and dividing it by

the number of residents. I use this to classify counties as urban or rural, with the cutoff

set at 350 residents per square kilometer.8 I drop any county-election cell with missing vote

totals or demographic information. Further, I drop counties with 500 or fewer residents,

as often these areas report more than 100 percent turnout due to small numbers of votes

and total population. Tables 21 and 22 in the appendix present summary statistics for the

demographic covariates used in the analysis, split by battleground and non-battleground

states. The demographic covariates are similar across battleground and non-battleground

states.

4.3 Cost of Voting

I use three sets of covariates to capture the cost of voting: (1) a measure of polling-place

congestion, (2) state-level election-law cost shifters, and (3) county-level employment rates.

To proxy for queues at the polls, for each county I construct a congestion index that

divides the total voting-age population by the number of in-person polling locations on

Election Day. This index captures the relative burden of waiting in line to vote, as a higher

value indicates more people share a polling place, which can lead to longer wait times and

thus increased costs of voting.

Polling place data come from the Election Administration and Voting Survey (EAVS),

a biennial national survey administered by the U.S. Election Assistance Commission. The

EAVS collects detailed administrative data from local election officials, including the number

7For example, the 2006-10 ACS file is matched to the 2008 election.
8This threshold is chosen to match the classification rule used by the U.S. Census Bureau which used 1,000

residents per square mile. https://www.census.gov/newsroom/blogs/random-samplings/2022/12/redefining-
urban-areas-following-2020-census.html
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of polling places, voting methods, and ballots cast. However, approximately 19% of county-

election observations are missing polling place data. Appendix C.2 provides details on the

imputation strategy for these missing values.

To match the scale of other covariates, I convert this index to its empirical percentile.

Motivated by evidence that urban and rural residents experience polling-places differently

(Bagwe, Margitic, and Stashko, 2022), I interact the congestion index with an indicator

for urban status, defined as counties with more than 350 residents per square kilometer.

This yields two separate covariates: one for urban congestion and one for rural congestion.

Finally, in states that conduct universal vote-by-mail, I set the congestion index to zero.

To capture cross-state and temporal variation in the administrative burden of voting, I

incorporate three state-level measures from Li, Pomante, and Schraufnagel (2018). First,

voter identification (ID) requirements are coded on a five-point scale ranging from 0 (sig-

nature only) to 4 (strictly enforced photo ID), with intermediate values for less stringent

enforcement and non-photo alternatives. Second, polling access is proxied by the statutory

number of in-person voting hours on Election Day. Li, Pomante, and Schraufnagel (2018)

compute each state’s average from the minimum and maximum legal polling times and sub-

tract this value from 20, which is the maximum feasible window from midnight to 8:00 p.m.

to define a poll-hours gap. For mail-in voting states, HI, UT, and CO are scored based

on actual polling hours since they maintain physical polling places, while OR and WA are

assigned the full 20-hour window based on ballot return deadlines. Third, registration dead-

lines are measured as the number of days before Election Day by which voters must register;

states offering same-day registration receive a score of zero.

In all cases, I apply a linear transformation subtracting the minimum and dividing by

the range to map the raw values from Li, Pomante, and Schraufnagel (2018) to the unit in-

terval [0, 1], where higher scores correspond to more restrictive policies. This transformation

ensures that these election-law cost shifters are on the same scale as the demographic and

congestion covariates, making them easier to estimate alongside the other parameters in the
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model.

Finally, to account for the opportunity cost of time and broader economic constraints, I

include the share of the voting-age population that is employed. Employment shares come

directly from American Community Survey data.

Summary statistics for all three sets of cost covariates are presented in Appendix C.1.

4.4 Identifying Battleground States and Constructing Campaign

Effort

While the model endogenously determines how effort is allocated across states, I must first

identify which states are contested and quantify the total campaign resources available to

each party in each election year. I define battleground states empirically using data from the

Wesleyan Media Project, which reports state-level television advertising by party and sponsor

type. I then use national disbursement records from the Federal Election Commission (FEC)

to scale these media expenditures into a broader measure of total mobilization effort within

each battleground state. Summing across these states yields the total campaign budget

available to each party in each election year.

Battleground states are classified as the ten states with the highest combined Democratic

and Republican television advertising expenditures between August 1 and Election Day in

each presidential cycle, a timeframe chosen to exclude primary-season spending. Campaign

activity is highly concentrated: these states account for 87% of total advertising expenditures,

while most of the remaining states receive less than 0.5% individually. Table 12 shows how

the spending share rises as states are added in descending order of advertising expenditures:

the first few additions yield large gains, but by the tenth state further increases are negligible,

indicating that the top ten capture nearly all campaign resources. As a robustness check, I

re-estimate the model using the top twelve states; the results are qualitatively similar.

Although a few non-battleground states receive limited outreach, assuming zero effort

outside the battleground provides a tractable approximation that closely matches the ob-
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served spending distribution. Summary statistics are reported in Appendix C.3. The specific

battleground states identified in each election year are shown in Figure 3 for 2008, 2012, 2016,

and 2020, with the classification updated separately for each cycle.

Figure 3: Battleground States Across 2008 - 2020 Presidential Elections

2008 2012

2016 2020

Notes: Each subfigure shows the battleground states (labeled in black) for the respective
election year. The states are identified based on the total television advertising expenditures
by both parties, with the top ten states by spending classified as battlegrounds.

While the Wesleyan Media Project provides detailed data on television advertising within

battleground states, it does not capture the full scope of campaign mobilization. Television

is a key channel, but campaigns also engage in digital outreach, direct mail, telemarketing,

and travel, with meaningful variation across parties in how resources are allocated. Relying

solely on television data would understate total campaign effort, and could bias comparisons
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if one party disproportionately invests in non-television channels.

To address this, I use the Wesleyan data as a base to identify mobilization efforts within

battleground states, and then scale these figures to recover total campaign budgets. This

is done using Federal Election Commission (FEC) itemized disbursement records, which

provide a comprehensive view of campaign spending by category.

Although the FEC includes purpose descriptions for each transaction, it does not report

where the activity occurs. Vendor addresses are recorded, but reflect the firm’s location,

not the target of mobilization. For instance, an advertising agency based in California may

deploy ads in Michigan.

To isolate direct voter contact, I classify each transaction into one of five mutually ex-

clusive mobilization categories—media, digital, print, telemarketing, and travel— based on

keyword matching in the purpose description field (see Appendix D). This procedure excludes

overhead expenditures such as salaries, legal fees, and compliance costs.

Let FECptc denote total spending by party p in category c during year t. I compute the

national share of spending allocated to each category (denoted as ϕptc) as:

ϕptc =
FECptc∑
c FECptc

.

Assuming that television ads correspond to the “media” category, I infer total effort in

battleground state s as:

Espt =
TVspt

ϕptmedia

,

and total party-level effort as:

Ept =
∑

s∈BGt

Espt.

Where BGt is the set of battleground states for election year t. Table 4 reports the estimated

composition of campaign disbursements, while Table 5 shows total inferred mobilization

budgets by party and year, aggregated over battleground states.
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To isolate general-election activity, I restrict the Wesleyan sample to ads aired on or after

August 1 of each election year. By this point, major-party nominees are finalized, primaries

are complete, and campaigns begin targeting the general electorate.

Table 4: Share of Disbursements by Category and Party

2008 2012 2016 2020

Category Dem Rep Dem Rep Dem Rep Dem Rep

Media 0.704 0.774 0.744 0.674 0.772 0.431 0.615 0.472

Online / digital 0.079 0.000 0.108 0.123 0.073 0.387 0.367 0.441

Print / mail 0.060 0.025 0.035 0.055 0.005 0.010 0.003 0.022

Phone / text 0.024 0.068 0.047 0.044 0.004 0.009 0.004 0.000

Travel / event 0.133 0.133 0.066 0.105 0.145 0.164 0.011 0.064

Notes: Entries report the fraction of total itemized operating disbursements
made by the two major-party presidential candidate committees that falls in
each spending category during the indicated election cycle. Shares are cal-
culated from Federal Election Commission (FEC) operating-expenditure files
after (i) restricting to general-election spending by the principal presidential
committees, and (ii) assigning each transaction to a single category using key-
word matching (see Appendix D for details). Columns sum to one within each
party-year.

Table 5: Total Campaign Spending in Battleground States by Party
(2020 USD)

Year 2008 2012 2016 2020

Democratic 257,000,000 349,000,000 153,000,000 392,000,000

Republican 158,000,000 221,000,000 155,000,000 416,000,000

Notes: Total estimated campaign expenditures in battleground states, aggre-
gated at the party level. Values are in constant 2020 dollars and reflect the
inferred mobilization budget constructed from television advertising data and
scaled using national disbursement shares.
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5 Results

Figure 4 and Table 6 summarize the estimated coefficients, showing how demographic and

institutional covariates shape both baseline political alignment and the cost of voting. They

also report the coefficients that map to key structural parameters: the utility gain from

campaign effort (θ), the parameters of the perceived voting efficacy function (α1, α2), and

the standard deviations of the county- and state-level shocks (σj, σs).
9

5.1 Estimated Coefficients for Partisan Alignment

The µ coefficients govern counties’ baseline political alignment (µjst = βµt ·Xµ
jst
) where Xµ

jst

is a vector of county-level demographic and socio-economic variables. Negative values shift

counties toward a Democratic baseline, while positive values shift them toward a Repub-

lican baseline. Figure 4 shows the estimated coefficients for the µ component, along with

95% confidence intervals. As can be seen, most coefficients are statistically different from

zero. Further, the signs typically align with well-established empirical patterns. Counties

with higher rates of college or advanced degree attainment, and larger Black and Hispanic

population shares, lean more Democratic. In contrast, counties with higher proportions of

white residents or lower educational attainment tend to lean more Republican. These results

serve as a useful validity check on the model’s estimates.

5.2 Estimated Coefficients for the Cost of Voting

Table 6 reports how institutional and socio-economic variables relate to the cost of voting.

The cost function

cjst = exp(βc ·Xc
jst)

9For ease of interpretation, coefficients for the µ component are shown graphically in Figure 4, while the
full set of estimates appears in Tables 16–19 in the Appendix.
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maps these characteristics into a latent participation cost. Higher polling place congestion

in both urban and rural areas is associated with significantly greater costs, while counties

with higher median income or employment tend to face lower estimated costs.

Institutional rules show more mixed effects. States that require voters to register further

in advance exhibit higher participation costs, consistent with evidence that easing registra-

tion requirements can raise turnout (Grumbach and Hill, 2022; Burden et al., 2014). In

contrast, voter ID laws and polling hours have small and statistically insignificant coeffi-

cients. The null effect of ID laws aligns with recent findings that such requirements have

limited impact on turnout (Cantoni and Pons, 2021).

Figure 4: Estimated Coefficients for the µ Component

Notes: The plot shows the estimated coefficients for the model, with 95% confidence intervals.
The coefficients represent the impact of each factor on the political alignment of counties,
entered as µjs = βµ ·Xµ

js
. The x-axis shows βµ coefficients, while the y-axis lists the variables.

AIAN is the American Indian and Alaska Native population share.

34



Table 6: Estimated Coefficients

Parameter Variable Coefficient Std. Error P-Value

Cost of Voting Constant -0.481 0.020 0.000
Voter ID laws -0.011 0.007 0.107
Urban polling density 0.457 0.026 0.000
Rural polling density 0.361 0.024 0.000
Employment rate -0.678 0.027 0.000
Polling hours 0.070 0.016 0.000
Registration deadlines 0.198 0.006 0.000

Voting Efficacy Constant 1 1.772 0.094 0.000
Constant 2 -3.054 1.563 0.051

Campaign Effort θ -3.092 0.055 0.000

Std. Dev. County Shocks ση -1.991 0.004 0.000
Std. Dev. State Shocks σδ -1.525 0.068 0.000

Notes: All coefficients are from the maximum likelihood estimation. Cost-related covariates
are expressed in standardized units (e.g., percentiles or logs).

5.3 County-Level Political Alignment

Figure 5 plots the estimated distribution of county-level baseline partisan preferences, µjst,

defined as the expected utility differential favoring the Republican candidate in county j of

state s, prior to the realization of campaign effort or shocks.

In both battleground and non-battleground states, the distribution of µjst is unimodal

and right-skewed, with average values of 0.10 and 0.11 respectively. These estimates are not

population-weighted, so they reflect geographic rather than electoral mass and overrepresent

rural, Republican-leaning counties.

Notably, the left tail is longer than the right in both cases. This implies that while most

counties lean slightly Republican, the strongest partisan alignments tend to favor Democrats.

5.4 County-Level Cost of Voting

Figure 6 plots the estimated cost of voting across all U.S. counties, separately for bat-

tleground and non-battleground states. Table 7 summarizes the key statistics. The cost

measure shown here, cjst = exp(βc · Xc
jst), reflects institutional and socioeconomic barri-
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Figure 5: Estimated µ for all counties

Notes: The figures show the estimated baseline county-level utility in favor of the Republican
candidate (µjst). The left panel shows the estimated µjst for counties in battleground-states
(where equilibrium effort levels are calculated), while the right panel shows the corresponding
estimates for non-battleground states.

ers to participation, but does not yet account for perceived voting efficacy. I turn to that

adjustment in the next section.

In the raw cost estimates, average values are quite similar across the two groups: the mean

is 0.575 in battleground counties and 0.588 in non-battlegrounds, with similar dispersion

(standard deviation = 0.073 vs. 0.064). The similarity reflects the fact that institutional

voting costs, such as registration deadlines and polling congestion, do not systematically

differ by state competitiveness.

However, this picture shifts once we account for perceived voting efficacy. Because effi-

cacy is systematically lower in non-battleground states, the effective cost of voting is higher

in those areas. The next subsection formalizes this adjustment and shows that, after incor-

porating efficacy, the gap in participation costs between battleground and non-battleground

counties widens considerably.
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Table 7: Summary Statistics for Estimated Cost of Voting by State Type

Cost Effective Cost

Statistic BG Non-BG BG Non-BG

Mean 0.575 0.588 0.578 0.616
Std. Dev. 0.073 0.064 0.073 0.070
Min 0.359 0.369 0.361 0.376
Max 0.824 0.813 0.824 0.881

Notes: Raw cost is computed as cjs = exp(βc ·X(c)
js

).
The effective cost adjusts for perceived voting ef-
ficacy, cjs/p(σs,D, σs,R), as defined in the turnout
equations (Equations (4)–(5)). Lower values of p raise
the effective cost, dampening turnout incentives. BG
= Battleground states; Non-BG = Non-battleground
states.

5.5 Perceived Voting Efficacy

As defined in Section 2, voting efficacy is modeled as a rescaled logistic function:

p(κs) =
p̃(κs)− p̃(0)

p̃(1)− p̃(0)
, where p̃(κs) =

1

1 + exp (−α1(κs − α2))

where κs measures the competitiveness of the state-level contest.

Maximum likelihood estimation yields

α̂1 = 5.88, α̂2 = 0.05,

implying a steep but continuous relationship between competitiveness and perceived voting

efficacy that saturates quickly, as seen in Figure 7. Perceived voting efficacy reaches 0.90

by κs = 0.51 and exceeds 0.99 by κs = 0.84. This pattern suggests that voters perceive

diminishing marginal returns to electoral closeness; once a contest is already moderately

competitive, any further increase in closeness does little to change perceived voting efficacy.

Because efficacy scales the cost of voting as cjs/p(κs), even small differences in κs ma-

terially affect turnout incentives. For instance, at a baseline cost cjs = 0.59 (the mean in

non-battleground states), the ratio of cost to perceived voting efficacy is:
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Figure 6: Estimated cost for all counties

Notes: The figures show the estimated cost of voting for all counties. The left panel shows
the estimates for counties where the equilibrium effort levels are calculated, while the right
panel shows the corresponding estimates for non-competitive states.

0.59

0.90
≈ 0.66 vs.

0.59

1.00
= 0.59,

implying a 12 percent increase in the effective cost of participation.

This adjustment is negligible in battleground states, where high competitiveness keeps

perceived voting efficacy near its upper bound of 1.0. In non-battleground states, however,

the effect is substantial. According to Table 7, accounting for lower efficacy raises the mean

effective cost from 0.59 to 0.62. The impact is even more pronounced for the highest-cost

voters, where the maximum effective cost rises from 0.81 to 0.88.

5.6 Equilibrium Campaign Effort

In equilibrium, candidates q ∈ {D,R} choose how to allocate campaign effort across battle-

ground states to maximize their probability of winning the national election. The impact of
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Figure 7: Estimated Voting Efficacy Function

Notes: Estimated perceived voting efficacy as a function of the turnout ratio. Blue lines plot
(2.1.3) evaluated at (α̂1, α̂2) = (5.88, 0.05). Red circles are state-year observations.

effort on the utility differential is governed by the function

m(es,q, es,−q) = θ e1/γs,q − ψ θe
1/γ
s,−q.

A grid search over values of γ and ψ yields estimates γ̂ = 2.0 and ψ̂ = 0.25 as the

best-fitting parameters. The corresponding maximum likelihood estimate for θ is θ̂ = 0.046.

This results in an average utility gain of approximately 0.056 for Democratic partisans,

and 0.047 for Republicans. To understand the magnitude of this effect, I compute the ratio

of the utility gain from effort to the baseline partisan utility difference, m(es,q, es,−q)/|µjs|,

for each county. For the median county, this ratio is approximately 0.10 for both parties,

indicating that for a typical county, campaign mobilization increases the effective partisan

preference by a notable 10% relative to its baseline.

However, the distribution of this effect is highly skewed. The mean of the ratio is a much

larger 0.67 for Democrats and 0.58 for Republicans. This large gap reveals that the impact of

campaign effort is exceptionally strong in a subset of counties with very low initial partisan
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leanings (|µjs| ≈ 0). These politically marginal counties are therefore the most susceptible

to being reshaped by campaign spending. Whether this translates into additional votes,

however, depends on the other components of a voter’s decision: the participation cost (cjs)

and the competitiveness of the statewide contest (p(κs)), in addition to the county and

state-level shocks.

To quantify marginal responsiveness to effort, I compute county-level elasticities of turnout

with respect to campaign effort:

εjs,q,q =

(
∂σjs,q
∂es,q

)(
es,q
σjs,q

)
, εjs,q,−q =

(
∂σjs,q
∂es,−q

)(
es,−q

σjs,q

)
, q,−q ∈ {D,R}.

More details on the derivation can be found in Appendix F.1. Table 8 reports the average

elasticity for both same and cross-elasticities across all battleground states and election years,

weighted by the county population.

Table 8: Mean elasticity of turnout with respect to own and opponent effort

Effort (D) Effort (R)

Turnout (D) 0.053 −0.012

Turnout (R) −0.011 0.040

A 10% increase in Democratic effort raises Democratic turnout by roughly 0.53% and

lowers Republican turnout by 0.11%. Conversely, a 10% increase in Republican effort raises

Republican turnout by about 0.40% and lowers Democratic turnout by 0.12%. The finding

that campaigns primarily affect their own voters, with smaller impacts on their opponents,

suggests the main channel of influence is mobilization rather than persuasion. Further, these

modest elasticities suggest at current levels of campaign spending, the marginal voter is

relatively unresponsive to additional effort. This finding, however, stands in contrast to the

meaningful influence campaign effort exerts across the entire spectrum of voters, as will be

discussed in Section 7
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6 Model Fit and Validation

The credibility of the structural model depends not just on internal coherence, but on its abil-

ity to reproduce empirical patterns that were not mechanically imposed during estimation.

This section validates the model along two critical dimensions. First, on the voter’s side,

I show the model’s core behavioral mechanism, the turnout response to intrinsic competi-

tiveness, is quantitatively consistent with reduced-form evidence from a border discontinuity

design. Second, having established this behavioral foundation, I demonstrate the model’s

predicted effort allocations from the candidate side of the model align closely with observed

candidate activity.

6.1 Matching Turnout Responses to Competitiveness

The structural model predicts intrinsic competitiveness has a direct effect on turnout, in-

dependent of campaign effort. This effect operates through the estimated voting efficacy

function: as competitiveness increases, a voter’s perceived efficacy rises, making turnout

more attractive; when competitiveness declines, perceived efficacy falls, discouraging par-

ticipation. To evaluate whether the model generates a quantitatively accurate response to

competitiveness, I compare its predicted turnout effect to reduced-form estimates that isolate

comparable variation.

To isolate the effect of competitiveness on turnout within the model, I simulate a coun-

terfactual in which a county is hypothetically placed into a state where the election is ex-

pected to be exactly tied (κ = 1). The county’s own characteristics (partisanship, voting

costs, campaign effort, and structural shocks) are held fixed, meaning only the perceived

competitiveness of the statewide environment is altered. Solving equations 4 and 5 under

this scenario for each non-battleground county yields an average turnout increase of 1.74

percentage points across non-battleground counties10.

I assess the credibility of this prediction using a border discontinuity design that compares

10I do not use battleground states for this counterfactual as p(κs) ≈ 1 for all of these states
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turnout across adjacent counties in different states but within the same media market. These

counties are exposed to identical political advertising and share similar demographics due to

geographic proximity, but differ in statewide competitiveness. Because campaign advertising

is held constant within a media market, the design offers a clean quasi-experimental test of

how turnout responds to competitiveness.

A key advantage of the border discontinuity design is that it compares counties within the

same media market, thereby holding constant exposure to broadcast advertising. Nonethe-

less, two potential threats to identification warrant careful consideration. The first is that

ground operations such as field offices or campaign events may vary discontinuously across

state lines. The second, is that digital advertising, unlike broadcast television, can be tar-

geted at the state level, potentially violating the assumption of equal campaign exposure

within media markets. Two robustness checks, discussed below, verify that these concerns

do not drive the main results.

To create a direct counterpart to the model’s prediction, I use the reduced-form estimates

to calculate the implied turnout gain from moving a typical non-battleground state to a

perfect tie. Using the mean non-battleground competitiveness (κ ≈ 0.694) as the baseline,

the estimates imply a turnout increase of 1.67 percentage points. This range is remarkably

close to the model’s predicted average effect of 1.74 percentage points, providing strong

external validation for the model’s competitiveness channel.

6.1.1 Border Discontinuity Design

Figure 8 illustrates the logic of the border discontinuity design using the Ohio–Kentucky

media market. Counties on both sides of the state line receive the same political advertising

but face different levels of statewide competitiveness. Identification relies on the assumption

that, conditional on shared media exposure, turnout differences across the state border

capture differences in electoral competitiveness.

The analysis uses the same county-level dataset as the structural estimation, restricted to
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Figure 8: County-Level Variation in Competitiveness and Campaign Effort

(a) County Competitiveness (b) Per Capita Spending

Notes: Plots show county-level variation in competitiveness and campaign effort within the Cincin-
nati and Charleston-Huntington DMAs in 2012. Both regions span multiple states (Indiana, Ohio,
West Virginia, and Kentucky), allowing for comparisons across counties with shared media expo-
sure but differing statewide electoral contexts. Panel (a) plots state-level competitiveness, assigned
to each county based on its state-year. Panel (b) shows total per-capita campaign spending across
counties, aggregated from candidate disbursements and media market ad data. As can be seen,
competitiveness sharply varies across state borders, while per-capita spending is constant through-
out the DMA. Each map overlays DMA boundaries (black), state borders (red), and county lines
(gray).

counties located on state borders within media markets that span multiple states. Following

Spenkuch and Toniatti (2018), counties bordering multiple neighbors are included once for

each pairwise comparison. Counties that are split across multiple media markets are dropped.

Only 8 counties are dropped for this reason, out of over 3,000 observations.

Balance tests (Appendix G.1) regress county-level covariates on an indicator for being

in the higher-turnout state within each border pair, controlling for border-pair-by-year fixed

effects. With the exception of a modest imbalance in Hispanic population share, none of the

demographic, educational, or economic covariates show significant differences, supporting

the validity of the identification strategy.

The main regression is conducted at the county-border pair-year level, with each obser-

vation representing a county matched to a neighboring county across a state border, and

within the same media market. Turnout is regressed on state-level competitiveness using:
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Turnoutcpt = β κs(c)t + Γ ·Xcpt + δpt + χs(c) + εcpt (18)

where Turnoutcpt is the share of the voting-age population in county c, border pair p, and

year t that cast ballots for either the Democratic or Republican presidential candidate. The

key regressor, κs(c)t, is the state-level competitiveness of the state containing county c in year

t, defined identically to the model as the ratio of trailing to leading party’s two-party vote

share.

The fixed effects δpt absorb all time-varying factors shared by counties within each border

pair. Most importantly, this includes effects from campaign exposure, since paired counties

lie within the same media market. State fixed effects χs(c) account for time-invariant state

characteristics that may influence turnout. The vector Xcpt includes county-level controls for

demographics, education, and economic conditions, which are included in robustness checks

to ensure that the results are not driven by imbalances in these covariates. The coefficient β

is therefore identified from cross-state variation in competitiveness κs(c)t within each border

pair, after conditioning on fixed effects that absorb campaign exposure and time-invariant

state factors.

6.1.2 Results

Table 9 reports the main regression-discontinuity estimates. Column (1) presents the base-

line specification without covariates. Column (2) adds Hispanic population share, the only

variable flagged as imbalanced in the balance tests. Column (3) includes the full set of

demographic and economic controls. Standard errors (clustered by county-pair) appear in

parentheses. Across specifications, the estimated coefficients range from 0.054 to 0.064, and

are statistically significant at the p < 0.001 level.

A series of robustness checks confirm the stability of these results. First, to address

concerns that ground operations may vary across borders, I re-estimate the model excluding

all counties with evidence of field offices or campaign events, identified using Federal Election
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Commission data. The resulting estimates change only marginally, indicating that cross-

border differences in field operations do not drive the main results. More details on selecting

these counties and the results are provided in Appendix G.2.

A second consideration is that digital advertising, unlike broadcast television, can be

targeted at the state level, potentially violating the assumption of equal campaign exposure

within media markets. To account for this, I incorporate measures of per-capita digital

spending from Facebook in 2020. The coefficient on competitiveness remains statistically

significant, though larger in magnitude, likely reflecting the absence of state fixed effects in

this specification. As a complementary test that circumvents this data limitation, I restrict

the sample to the 2008 and 2012 elections, a period when digital advertising was significantly

less prevalent, as shown in Table 4. In this early digital-era sample, the estimated effect of

competitiveness is stable and remains highly consistent with the main results, ranging from

0.054 to 0.064. Taken together, these checks provide confidence that the findings are not an

artifact of confounding from digital campaign spending.

Finally, I test whether results are sensitive to the measurement of competitiveness. In-

stead of realized vote shares, Appendix G.4 uses pre-election polling to construct κst. Al-

though the estimated coefficients are smaller (0.029–0.030), they remain positive and highly

significant, reinforcing that the turnout response is not an artifact of post-treatment mea-

sures of closeness.

These checks demonstrate that the estimated effect of competitiveness on turnout is both

robust and substantively meaningful. The coefficients remain positive and highly significant

across a range of specifications, samples, and alternative measures of competitiveness, pro-

viding confidence that the reduced-form relationship is genuine rather than an artifact of

campaign outreach or measurement choice. This stability establishes a credible benchmark

against which to evaluate the model’s predicted turnout response.
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Table 9: Effect of Competitiveness on Turnout

(1) (2) (3)

Competitiveness
Estimate 0.054∗∗∗ 0.059∗∗∗ 0.064∗∗∗

(Std. Error) (0.007) (0.007) (0.007)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
State FE Yes Yes Yes
Observations 8,126 8,126 8,126
R2

within 0.003 0.156 0.534

Notes: Each column reports regression estimates of the effect of state-level competi-
tiveness on turnout, measured at the county-border pair-year level. All models include
border-pair-by-year fixed effects and state fixed effects. Columns (2) and (3) sequen-
tially add controls for covariates flagged as imbalanced in the balance tests and the full
set of demographic and economic covariates. Standard errors (in parentheses) are clus-
tered at the county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.

Table 10: Estimated Turnout Effect of Moving from Average Non-
Battleground Competitiveness to Full Competitiveness

No Controls Balance Sig. Controls All Controls

Effect (pp) 1.67 1.82 1.98

Notes: Each entry reports the estimated increase in turnout (in percent-
age points) associated with raising competitiveness from the non-battleground
state mean (κst = 0.694) to full competitiveness (κst = 1), based on the coef-
ficients in Table 9.

6.1.3 Discussion

To compare with the model’s prediction, I compute the implied turnout effect of increasing

competitiveness from the non-battleground mean (κst = 0.694) to a perfect tie (κst = 1),

a change of 0.306 units. Multiplying this difference by the estimated coefficient on com-

petitiveness yields a predicted turnout increase of 1.67 percentage points using the baseline

specification (see Table 10). This closely aligns with the model’s predicted effect of 1.74

percentage points. The estimates remain stable across specifications, increasing to 1.82 and

1.98 percentage points when controlling for imbalanced covariates and then using the full

set of controls, respectively. While the estimates are slightly larger when adding covariates,

they still remain close to the model’s prediction. The correspondence between model-implied

and quasi-experimental estimates provides strong external validation of the recovered voting
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efficacy function. It suggests that the model accurately captures the behavioral response to

competitiveness and supports the credibility of the model’s counterfactual predictions.

The magnitude of the reduced-form estimates is notable relative to existing causal evi-

dence. In redistricting-based studies of U.S. legislative elections, increased competitiveness

typically raises turnout by less than one percentage point (Ainsworth, Munoz, and Gomez,

2022; Fraga, Moskowitz, and Schneer, 2022). Field experiments that manipulate perceptions

of closeness often find no detectable effect on turnout, casting doubt on pivotality-based

mechanisms (Enos and Fowler, 2014). By contrast, Bursztyn et al. (2024) document sizable

turnout effects in response to close polls in Swiss referenda, though in a different institutional

context.

The present findings differ in two key respects. First, prior studies often examine lower-

salience elections, such as local or state legislative contests, where electoral competitiveness

may be less salient to voters. In contrast, this paper focuses on U.S. presidential elections,

where political stakes are high and baseline engagement is substantially greater.

Second, many existing designs confound competitiveness with campaign activity. Redis-

tricting studies, for example, assign voters to more competitive districts, but such districts

are often the target of heightened mobilization efforts. In that setting, observed increases

in turnout may reflect campaign outreach rather than competitiveness per se. The border

discontinuity design avoids this conflation by comparing adjacent counties within the same

media market, holding campaign exposure constant while allowing competitiveness to vary

at the state level.

This setting allows for a clean test of the model’s core behavioral prediction: that com-

petitiveness, independent of campaign mobilization, can meaningfully affect turnout. The

magnitude and robustness of the estimated response support this interpretation, demon-

strating that competitiveness is not only salient but behaviorally consequential, even net of

campaign intensity.

To ensure the results of the border discontinuity are not driven by idiosyncrasies of
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the data, I conduct a complementary robustness check replicating the analysis of Spenkuch

and Toniatti (2018). Their approach compares counties on opposite sides of a media market

boundary but within the same state, thereby holding competitiveness constant while allowing

television advertising exposure to vary. I recover similar estimates: campaign advertising has

no discernible effect on turnout, while differences in partisan spending meaningfully affect

vote shares. The close replication of their findings indicates that the turnout effects in my

main design are not artifacts of sample selection or measurement, but reflect genuine effects

of electoral competitiveness. See Appendix G.5 for details.

6.2 Matching Effort Allocations to Campaign Activity

Validating the candidate side of the model requires comparing its predicted equilibrium

effort allocations to observed campaign behavior. A primary challenge in this validation

lies in mapping the model’s theoretical concept of effort to its empirical counterparts. The

model, for reasons of parsimony and tractability, conceptualizes effort (es,p) as a single,

unified resource. In practice, this corresponds to a diverse portfolio of campaign activities,

including television, digital outreach, in-person visits, and ground operations like canvassing.

The optimal mix of this portfolio likely varies by state as campaigns adapt to local conditions

and the tools within this portfolio have different characteristics. Some, like ad buys, are

highly divisible, while others, like candidate visits, are inherently lumpy.

The validation is further complicated by the fact that only a subset of these activities are

captured in publicly available data: television, digital, and presidential visits. Consequently,

the analysis necessarily compares the model’s prediction of total effort against an incomplete,

though varied, set of its real-world components.

Nevertheless, one should still expect the model’s predicted effort allocations to align with

various proxies for campaign effort. Where the model predicts high amounts of effort, one

should observe substantial campaign activity. Further, given the model’s assumption that

effort is a single, divisible resource, it is expected that the model’s predictions will align
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more closely with proxies that reflect scalable and divisible campaign activities, such as

digital and television advertising, while showing weaker correspondence with proxies that

capture indivisible or “lumpy” activities, like in-person candidate visits.

With this in mind, Table 11 summarizes the fit of the model’s predicted effort shares

against three key proxies for campaign effort: television advertising, presidential candidate

visits, and digital advertising. Digital advertising, sourced from OpenSecrets, is only avail-

able for the 2020 election cycle.

As anticipated by the framework, the model’s predicted allocations align strongly with

observed spending on large-scale media. The fit for television advertising is robust across

all cycles, with correlations of ρ = 0.802 for Democrats and ρ = 0.760 for Republicans.

The correspondence is even stronger for digital advertising, the most granular proxy, where

the correlation between predicted state-level effort shares and observed spending in 2020 is

ρ = 0.907 for Democrats and ρ = 0.911 for Republicans. The correspondence is weaker

for the indivisible and logistically complex proxy of in-person presidential visits. For these

events, the correlations fall to ρ = 0.600 for Democrats and ρ = 0.539 for Republicans.

Table 11: Fit statistics by effort proxy and party

Effort proxy
Correlation ρ RMSE
Dem Rep Dem Rep

Television ads 0.802 0.760 .044 .048
Presidential candidate visits 0.600 0.539 .070 .065
Digital ads (2020 only) 0.907 0.911 .053 .067

Correlation and RMSE values reflect the match between predicted
effort shares and observed proxies by state. RMSE is computed as√

1
S

∑
s(ês − es)2 and reported in percentage points of total national

share.

Figure 9 visualizes the match by year. Within each panel, states are ordered by predicted

effort. Bars show the model’s predicted effort alongside observed campaign activity from

television advertising, in-person presidential visits, and, for 2020, digital advertising. High-

priority states such as Florida consistently appear at the top, while low-priority states such
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as Iowa remain at the bottom. This alignment provides strong validation for the model’s

predictions.

7 Discussion and Policy Implications

This section examines the broader implications of the model for voter turnout and cam-

paign behavior. I begin by decomposing the turnout gap between battleground and non-

battleground states into the contributions of electoral competitiveness, captured through

perceived voting efficacy, and direct campaign effort. I then address the puzzle of why

campaigns invest heavily in mobilization despite modest treatment effects found in field

experiments, showing how the model reconciles low marginal returns with large aggregate

effects on turnout. Finally, I use the model to evaluate a counterfactual public financing

reform that equalizes and reduces campaign budgets, illustrating how institutional changes

to candidate resources can reshape both participation and electoral competitiveness.

7.1 Disentangling Intrinsic Competition and Strategic Effort

On average, 62.6% of eligible voters in battleground states turn out in presidential elections,

compared to just 56.5% in non-battleground states (see Table 3). According to the structural

model, this 6.1 percentage point gap can be fully accounted for by differences in electoral

competitiveness and campaign effort. To quantify their individual contributions, I simulate

a sequence of counterfactuals, shutting down each mechanism in turn while holding all other

components of the model fixed. The results show that roughly one-third of the gap is

attributable to differences in intrinsic competitiveness, while the remaining two-thirds are

due to strategic campaign effort.
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Figure 9: Estimated Effort Levels by Election Year

Notes: Each panel shows the model’s predicted effort shares alongside observed campaign
activity from television advertising, in-person presidential visits, and digital advertising (for
2020). Effort types are distinguished by both color and hatch patterns (see legend). States
are ordered by predicted effort, with the total national share summing to 100%.
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7.1.1 Battleground States

I begin from the observed equilibrium in battleground states and conduct a two-step coun-

terfactual. First, I eliminate campaign effort by setting esD = esR = 0 in the turnout

equations (4) and (5), while keeping each state’s equilibrium level of voting efficacy p(κs)

fixed. This shuts down the direct effect of effort but retains high levels of competitiveness,

characteristic of battleground states. This adjustment reduces turnout from 62.6% to 58.0%,

a decline of 4.6 percentage points. In absolute terms, turnout falls from 40.9 million votes

to 38.0 million on average, a loss of 2.9 million votes per election cycle.

Second, continuing to hold effort at zero, I reduce voting efficacy by replacing p(κs) with

the average level observed in non-battleground states, 0.94. This further lowers turnout to

56.1%, a decline of 1.9 percentage points relative to the previous step. In absolute terms,

turnout falls on average to 36.6 million votes, a loss of an additional 1.4 million.

7.1.2 Non-Battleground States

I apply a reverse counterfactual to evaluate how turnout in non-battleground states would

respond if they were assigned the characteristics of battleground states. These states begin

from an average equilibrium turnout of 56.6%, reflecting both low voting efficacy and no

campaign effort (see Table 12).

First, I increase voting efficacy by setting p(κs) = 0.99, the average level in battleground

states, while holding campaign effort at zero. This raises turnout to 58.6%, a gain of 2.0

percentage points. Introducing campaign effort at the average battleground level yields a

further 3.6-point increase, bringing turnout to 62.3%.

The same pattern holds in absolute terms: increasing voting efficacy alone adds 2.8

million votes, and introducing campaign effort adds another 6.1 million, for a total increase

of nearly 9 million votes across non-battleground states. Roughly one-third of the increase

is attributable to competitiveness, and two-thirds to mobilization.
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7.1.3 Summary

The model accounts for the full turnout gap by adjusting only two components: electoral

competitiveness and campaign effort. When applied to non-battleground states, raising both

mechanisms to the levels observed in battleground states, the counterfactual predicts turnout

of 62.3 percent, which is nearly identical to the 62.6 percent observed in battleground states.

When applied in reverse, reducing competitiveness and effort in battleground states to non-

battleground levels, the model predicts turnout of 56.1 percent, closely matching the 56.6

percent observed in non-battleground states. This symmetry suggests that these two forces

are sufficient to explain observed differences in turnout across these two groups. Further,

both mechanisms contribute significantly to the turnout gap. While the effect of intrinsic

competitiveness is smaller than that of strategic effort, its impact is still substantial, ac-

counting for roughly one-third of the overall difference, or 2.0 percentage points of turnout.

Ignoring either mechanism would substantially mischaracterize the drivers of turnout, high-

lighting the importance of including both mechanisms in any comprehensive electoral model.

Table 12: Counterfactual Decomposition of Turnout Gap

Scenario Turnout ∆ from Eqm ∆ from Baseline Share of Total Votes (M)

Battleground States

Equilibrium 0.626 — — — 40.90

No Effort, same ps 0.580 -0.046 -0.046 0.699 37.99

No Effort, Low ps 0.561 -0.019 -0.065 0.301 36.63

Non-Battleground States

Baseline (Low ps, No Effort) 0.566 — — — 92.78

High ps, No Effort 0.586 +0.020 +0.020 0.356 95.53

High ps, With Effort 0.623 +0.036 +0.056 0.644 101.65

Notes: Turnout is the share of eligible voters. Votes are in millions. “∆ from Eqm” refers to the change
from the previous row in each panel. “∆ from Baseline” refers to the change from the first row in each panel.
“Share of Total” refers to the fraction of the total turnout change explained by each component.
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7.2 The Cost of Mobilization

Field experiments consistently find modest marginal effects of campaign outreach on turnout

(e.g., Aggarwal et al., 2023; Spenkuch and Toniatti, 2018; Gerber et al., 2011). Yet presiden-

tial campaigns routinely invest hundreds of millions of dollars in battleground mobilization.

This apparent disconnect raises the possibility that campaigns could reduce outreach without

jeopardizing their electoral prospects.

However, most field experiments are conducted in environments where outreach is already

widespread, so they recover only local treatment effects near saturation. The model captures

this: at estimated equilibrium levels, the marginal cost of mobilizing an additional vote

exceeds $250. But this high marginal cost does not imply that campaigns can safely reduce

effort. The overall effect of mobilization remains quite large. Cutting back would depress

turnout and entail serious electoral consequences.

To quantify this, let Vs,p(es,D, es,R) denote the model-implied vote total for party p in

state s, given campaign efforts es,D and es,R. The total effect of mobilization is given by:

∆V ∗
s,p = Vs,p(e

∗
s,D, e

∗
s,R)− Vs,p(0, 0),

where e∗s,p is the estimated equilibrium effort level. Aggregating across all battleground states

yields

∆V ∗
p =

∑
s∈BG

∆V ∗
s,p.

Table 13 reports the additional votes generated by mobilization in each election from

2008 to 2020, along with corresponding turnout increases. On average, mobilization added

2.9 million votes, or about 4.4 percentage points, to turnout in battleground states.
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Table 13: Votes Added and Turnout Increase from Campaign Mobilization

Year Votes Added (Millions)
Turnout Increase

(Percentage Points)

Dem Rep Total Dem Rep Total

2008 1.66 1.04 2.70 2.46 1.54 4.00

2012 1.75 1.16 2.91 2.88 1.91 4.79

2016 1.06 1.09 2.15 1.59 1.64 3.23

2020 1.88 1.96 3.84 2.69 2.81 5.50

Avg 1.59 1.31 2.90 2.41 1.98 4.38

Notes: “Votes Added” reports the estimated number of addi-
tional votes due to campaign mobilization, relative to a zero-
effort counterfactual. “Turnout Increase” is expressed in per-
centage points relative to the voting-age population in battle-
ground states.

These vote gains translate into meaningful shifts in Electoral College outcomes. In a

counterfactual where the Democratic Party eliminated its mobilization effort while Repub-

licans maintained theirs, Democrats would have lost nearly 1.5 million votes per cycle in

battleground states. As a result, they would have lost three of the four elections between

2008 and 2020, rather than winning three. Even their 2008 victory would have narrowed

sharply, with just 302 electoral votes instead of 365.11

To assess what field experiments capture, I calculate the marginal cost of generating an

additional vote at equilibrium effort levels. This metric corresponds to the local treatment

effect of a small change in campaign intensity, precisely what a randomized field experiment

would estimate. The ACV for party p in state s, is given by

ACVs,p =
e∗s,p
∆V ∗

s,p

,

11Under the counterfactual, Democratic electoral vote totals fall to 302 (2008), 227 (2012), 223 (2016),
and 227 (2020), compared to actual outcomes of 365, 332, 232, and 306.
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while the marginal cost per vote (MCV) is:

MCVs,p =

(
∂Vs,p
∂es,p

)−1

.

Details on the MCV calculation are in Appendix H.

To analyze how costs vary with campaign scale, I simulate counterfactuals that scale each

party’s budget proportionally. Figure 10 plots the results. The left panel shows total votes

added as a function of effort. The right panel reports average and marginal costs per vote,

averaged across battleground states and years.

Figure 10: Average and Marginal Costs per Vote Across Effort Scales

Notes: Left panel: total votes added from campaign mobilization as a function of scaled
effort. Right panel: average and marginal cost per vote.

At low effort levels, mobilization is highly cost-effective, with average costs below $100

per vote. But costs rise steeply with scale: at equilibrium, marginal costs exceed $200 and

average costs surpass $150. These diminishing returns explain the small effects seen in field

experiments, even as aggregate effects remain large.

Taken together, these results reconcile two stylized facts. Marginal effects of mobilization

are small at observed effort levels, consistent with field experiment estimates. Yet the aggre-

gate impact remains substantial, warranting continued investment. Eliminating campaign

effort would induce large turnout declines and considerable electoral losses.
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7.3 Counterfactual: Public Financing Reform

To demonstrate the model’s utility, I simulate a counterfactual public financing reform that

caps each party’s campaign budget at the inflation-adjusted equivalent of the 2008 public

grant of $84.1 million. Under federal law, major party nominees have been eligible for such

grants if they accept spending limits and forgo private fundraising. In 2008, the Republi-

can nominee accepted the grant while the Democratic nominee declined it, and no major

party candidate has participated since, relying instead on privately raised funds that now

total several hundred million dollars. Note this simulates a more extreme version of public

financing, assuming that total campaign spending is capped at the public grant level.

The reform affects campaigns through two channels. First, it equalizes budgets, a change

especially consequential in 2008 and 2012 when Democrats held a significant spending advan-

tage. Second, it reduces the overall level of resources, cutting spending by more than $200

million per candidate in some cycles. For each election cycle, I solve for the optimal alloca-

tion of campaign effort under the new budget constraints and compare electoral outcomes,

turnout, and competitiveness to the observed baseline.

Table 14 shows that during the years when Democrats had a large spending edge, the

reform closes the electoral college gap by 15-30 votes. In 2016 and 2020, when spending was

more balanced, the reform has no effect on electoral outcomes.
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Table 14: Electoral College Votes: Observed vs. Reform

2008 2012 2016 2020

Democratic EVs (Observed) 364 332 233 306

Democratic EVs (Reform) 349 303 233 306

Change in Dem. EVs -15 -29 0 0

Republican EVs (Observed) 174 206 305 232

Republican EVs (Reform) 189 235 305 232

Change in Rep. EVs +15 +29 0 0

Notes: Observed values report actual Electoral College out-
comes. Reform values are simulated outcomes under a public
financing system that caps each party’s campaign budget at
the inflation adjusted equivalent of the 2008 public grant of
$84.1 million. Positive changes for one party correspond to
equal and opposite changes for the other.

Table 15 clarifies the mechanism behind these results. In 2008 and 2012 Democrats

consistently outspent Republicans across battleground states, whereas by 2016 and 2020 both

parties devoted roughly equal resources to campaigning. Under the reform, the Democratic

share of total spending drops to 50 percent in all four cycles, as candidates match each other’s

effort under the new budget constraints. As a result, the reform eliminates Democrats’ earlier

resource advantage, reducing their electoral votes in 2008 and 2012, but has little effect in

2016 and 2020 when spending was already more balanced.

The reform also narrows margins while lowering participation. Average victory margins

decline by 1.2 percentage points in 2008 and 1.4 points in 2012, yet this comes at the cost

of reduced turnout. As shown in Table 15, turnout falls by an average of 1.08 million votes

per election, with the largest drop of nearly 2 million in 2020.
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Table 15: Effects of Public Financing Reform in Battleground States

2008 2012 2016 2020

Dem. Effort Share (Observed) 62% 61% 50% 49%

Dem. Effort Share (Reform) 50% 50% 50% 50%

Change in Total Votes (millions) -0.79 -1.17 -0.41 -1.94

% States More Competitive 80% 90% 60% 30%

Reduction in Victory Margin (pp) 1.2 1.4 0.04 0.2

Notes: Table reports simulated effects of a public financing reform
that caps each party’s campaign budget at the inflation adjusted
equivalent of the 2008 public grant of $84.1 million. Effort shares re-
flect the average Democratic share of total campaign spending across
battleground states (summing to 100% with the Republican share).
Changes in votes are reported in millions. Competitiveness is mea-
sured as the share of battleground states with smaller victory margins
under the reform. Reductions in victory margins are average state-
level declines, expressed in percentage points.

Because the model explicitly accounts for abstention, it can trace how budget constraints

alter both the intensity of mobilization and the decision to participate at all. The reform’s

effects reveal a central tradeoff: it heightens competitiveness by eliminating spending dispar-

ities, but it also reduces overall turnout as campaigns scale back their efforts. By modeling

both strategic decision making by voters and campaigns, the model lets us capture this

nuanced dynamic.

8 Conclusion

This paper develops a novel structural model of turnout in U.S. presidential elections that

embeds voters and candidates in a common equilibrium. Turnout depends on both the effi-

cacy of voting, determined by the competitiveness of the election, and the level of campaign

outreach. These forces interact: candidates allocate resources to battleground states in an-
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ticipation that turnout will respond to strategic effort, while voters adjust their participation

based on both intrinsic competitiveness and campaign intensity.

By modeling competitiveness and effort as joint outcomes of strategic behavior, the frame-

work bridges two core literatures that have traditionally been studied in isolation. To my

knowledge, it is the first structural model to endogenize both turnout and effort within a

single electoral equilibrium.

The model is estimated using county-level data from the 2008 to 2020 presidential elec-

tions. Although campaign effort is not directly observed, the model infers it as a latent

variable consistent with the candidates’ best responses. These inferred allocations match

observed patterns of television and digital advertising across battleground states remarkably

well. On the voter side, the model’s predictions align with reduced-form evidence from a

border discontinuity design. This quasi-experimental approach shows that raising intrinsic

competitiveness increases turnout by 1.67 percentage points, closely matching the model’s

implied effect of 1.74 points. This consistency supports the credibility of the estimated

efficacy function and the structural separation of competitiveness from mobilization.

The central finding is that voter turnout is not simply motivated by electoral closeness or

independently mobilized by campaigns; rather, it is an equilibrium outcome of the interaction

between these two forces. Roughly two-thirds of the turnout gap between battleground and

non-battleground states is attributable to strategic campaign effort, with the remaining one-

third arising from the direct effect of competitiveness on individuals’ perceived voting efficacy.

While campaign mobilization is shown to be the dominant driver of this gap, the efficacy

channel remains a significant and non-negligible factor. Together, these forces account for the

entire 6.1 percentage point turnout gap between battleground and non-battleground states.

Beyond accounting for observed turnout patterns, the model also clarifies the nature of

campaign mobilization. It reconciles the small and costly marginal effects documented in field

experiments with the large aggregate influence of campaign activity in presidential elections.

In equilibrium, campaigns invest heavily until the marginal cost of an additional vote exceeds
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$250, even though the average cost of mobilization is closer to $150 per vote. This reflects

that early voters are relatively easy to mobilize, whereas in saturated campaign environments

new voters are much more expensive to reach. Field experiments, which typically measure

the effects of mobilization on these later voters, therefore find small impacts at high costs.

Yet the cumulative impact is substantial: on average, campaign outreach mobilizes nearly

three million additional voters and raises turnout by 4–5 percentage points in pivotal states.

A final counterfactual analysis of public financing reform highlights a fundamental trade-

off. Spending caps would tighten electoral competition and thereby raise turnout through

the efficacy channel. Yet this positive effect is offset by the reduction in campaign mobi-

lization. The model predicts that the net result would be a decline in overall participation,

underscoring the unintended consequences of policies that restrict campaign investment in

voter outreach.

This analysis necessarily abstracts from several complexities, opening avenues for future

work. Campaign effort is modeled as targeting only at the state level and assumed to

be zero in safe states. The static framework also omits dynamic features such as donor

responses, campaign learning, and primary-season investments. Extending the model along

these dimensions would enrich its applicability. Incorporating finer geographic targeting,

such as DMA-level strategies, could yield more precise predictions of effort. Embedding

a fundraising–mobilization tradeoff would provide a richer account of candidate decision-

making. Finally, applying the framework to lower-salience elections, including midterms and

gubernatorial contests, would test its external validity and broaden its scope.

More broadly, the framework offers a foundation for analyzing electoral participation

in settings where changes to the electoral environment influence both voter behavior and

campaign strategy. It provides a tractable tool for evaluating a wide range of institutional

reforms, from redistricting, which reassigns voters across district lines and reshapes the

electoral map, to voting laws that alter participation costs and shift turnout incentives. In

both cases, reforms affect not only the intrinsic competitiveness of elections but also the
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strategic effort decisions of candidates. A model that jointly endogenizes turnout and effort

within a common equilibrium is well suited to capturing these feedbacks and points to several

promising directions for future research. Ultimately, the analysis demonstrates that turnout

is neither purely “motivated” nor purely “mobilized,” but an equilibrium outcome of both.
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A Miscellaneous Tables and Figures

Table 16: Estimated Coefficients: Gender and Age

Parameter Variable Coefficient Std. Error P-Value

µ Male (2008) 0.533 0.123 0.000
Male (2012) 0.690 0.118 0.000
Male (2016) 0.649 0.118 0.000
Male (2020) 0.425 0.114 0.000
Age 18–29 (2008) -0.418 0.075 0.000
Age 18–29 (2012) -0.553 0.078 0.000
Age 18–29 (2016) -0.645 0.082 0.000
Age 18–29 (2020) -0.697 0.081 0.000
Age 65+ (2008) -0.308 0.101 0.002
Age 65+ (2012) -0.456 0.097 0.000
Age 65+ (2016) -0.395 0.093 0.000
Age 65+ (2020) -0.460 0.086 0.000

Notes: Coefficients reflect the estimated contribution of each demographic
covariate to baseline county-level partisan alignment. Variables are expressed
as fractions of county population unless otherwise noted.
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Table 17: Estimated Coefficients: Race and Ethnicity

Parameter Variable Coefficient Std. Error P-Value

µ White (2008) 1.446 0.220 0.000
White (2012) 1.451 0.222 0.000
White (2016) 1.668 0.221 0.000
White (2020) 1.473 0.167 0.000
Black (2008) 0.263 0.223 0.238
Black (2012) 0.252 0.226 0.265
Black (2016) 0.165 0.222 0.456
Black (2020) -0.125 0.168 0.457
Native American (2008) 0.659 0.234 0.005
Native American (2012) 0.701 0.238 0.003
Native American (2016) 0.698 0.231 0.003
Native American (2020) 0.325 0.174 0.063
Asian (2008) 1.144 0.298 0.000
Asian (2012) 1.238 0.300 0.000
Asian (2016) 1.233 0.290 0.000
Asian (2020) 1.160 0.232 0.000
Hispanic (2008) 0.734 0.223 0.001
Hispanic (2012) 0.737 0.224 0.001
Hispanic (2016) 0.687 0.220 0.002
Hispanic (2020) 0.507 0.165 0.002

Notes: See Table 16.
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Table 18: Estimated Coefficients: Education

Parameter Variable Coefficient Std. Error P-Value

µ High School Only (2008) -0.217 0.092 0.018
High School Only (2012) -0.448 0.099 0.000
High School Only (2016) -0.119 0.102 0.244
High School Only (2020) -0.194 0.100 0.052
Some College (2008) 0.303 0.078 0.000
Some College (2012) 0.087 0.085 0.307
Some College (2016) 0.350 0.088 0.000
Some College (2020) 0.110 0.088 0.209
College Only (2008) 0.220 0.109 0.043
College Only (2012) 0.123 0.108 0.255
College Only (2016) -0.351 0.110 0.001
College Only (2020) -0.679 0.103 0.000
College+ (2008) -1.976 0.153 0.000
College+ (2012) -2.015 0.151 0.000
College+ (2016) -2.253 0.149 0.000
College+ (2020) -2.525 0.133 0.000

Notes: See Table 16.
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Table 19: Estimated Coefficients: Year Effects

Parameter Variable Coefficient Std. Error P-Value

µ Year (2008) -1.233 0.238 0.000
Year (2012) -1.228 0.244 0.000
Year (2016) -1.314 0.244 0.000
Year (2020) -0.674 0.193 0.000

Notes: See Table 16.

B Model Appendix

B.1 Derivation of the Voting Rules

The decision to vote is framed within a standard instrumental voter model. For a given

voter i, let:

• uiR be the utility if the Republican candidate (R) wins

• uiD be the utility if the Democratic candidate (D) wins

• ci > 0 be the private cost of voting (e.g., time, effort).

A voter chooses one of three actions: vote for R, vote for D, or abstain. Without loss of

generality, assume the voter prefers R to D, so uiR > uiD. The choice is therefore between

voting for R and abstaining. The voter participates if the expected utility from voting

exceeds that from abstaining.

If the voter abstains, their expected utility is the probability-weighted average of the two

possible electoral outcomes:

E[U(abstain)] = Pr(R wins|i abstains)uiR + Pr(D wins|i abstains)uiD. (19)
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If the voter pays the cost ci and votes for R, their expected utility becomes:

E[U(vote R)] = Pr(R wins|i votes R)uiR + Pr(D wins|i votes R)uiD − ci. (20)

The individual votes for R if the net benefit is positive:

E[U(vote R)]− E[U(abstain)] > 0. (21)

Note that by definition, the probabilities of winning must sum to one:

Pr(R wins|i abstains) + Pr(D wins|i abstains) = 1

Pr(R wins|i votes R) + Pr(D wins|i votes R) = 1.

Substituting equations (19) and (20) into (21) gives the following condition for partici-

pation:

[Pr(R wins|i votes R)uiR + Pr(D wins|i votes R)uiD − ci]

− [Pr(R wins|i abstains)uiR + Pr(D wins|i abstains)uiD] > 0

Rearranging terms by candidate utility:

[Pr(R wins|i votes R)− Pr(R wins|i abstains)]uiR

+ [Pr(D wins|i votes R)− Pr(D wins|i abstains)]uiD > ci

Let ∆πR be the change in the probability of R winning due to voter i’s vote. Similarly,
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let ∆πD be the change for D.

∆πR = Pr(R wins|i votes R)− Pr(R wins|i abstains)

∆πD = Pr(D wins|i votes R)− Pr(D wins|i abstains)

Since probabilities must sum to one, Pr(R wins) + Pr(D wins) = 1, any increase in one

candidate’s win probability must be matched by an equal decrease in the other’s. Therefore,

∆πD = −∆πR. This change, ∆πR, is precisely the probability that voter i’s vote is pivotal

in favor of candidate R. Let’s define Ppivotal ≡ ∆πR.

Substituting back into the inequality, we get the final decision rule:

Ppivotal · uiR + (−Ppivotal) · uiD > ci

Ppivotal · (uiR − uiD) > ci

This is the canonical result: a voter participates when the probability of being pivotal,

multiplied by the utility difference, exceeds the cost.

To make this framework empirically tractable and behaviorally plausible, the model de-

viates from a literal interpretation of Ppivotal. Instead of assuming voters calculate precise

pivot probabilities (which are vanishingly small in large electorates), I model their subjec-

tive belief in their vote’s importance as a smooth, continuous function of electoral closeness,

denoted p(κs). The utility stakes, uiR − uiD, are captured by the term |∆ui|. This leads

directly to the voting rule used in section 2.1.3 of the main text:

p(κs) · |∆ui| > ci
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B.2 Deriving the Turnout Function

This section derives the county-level turnout rate equations for the Republican and Demo-

cratic candidates (equations (4) and (5)), as presented in the main text.

Consider the post-campaign utility differential for individual i in county js:

∆uijs =


min {−m(esD, esR) + ∆ũijs + ζjs , 0} , if ∆ũijs < 0,

max {m(esR, esD) + ∆ũijs − ζjs , 0} , if ∆ũijs ≥ 0,

where the baseline utility differential is

∆ũijs = µjs − ηjs − δs − ϵijs .

Republican Turnout

For an R-leaning voter (∆ũijs ≥ 0), turnout occurs if

p(κs) ·∆uijs > cjs .

Substituting the definition of ∆uijs :

p(κs) ·max {m(esR, esD) + ∆ũijs − ζjs , 0} > cjs .

Note that cjs > 0 and p(κs) > 0. The condition max{A, 0} > B with B > 0 is equivalent

to A > B. The turnout condition therefore simplifies to

m(esR, esD) + ∆ũijs − ζjs >
cjs
p(κs)

.

Substituting ∆ũijs and rearranging:
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ϵijs < m(esR, esD) + µjs −
cjs
p(κs)

− ηjs − δs − ζjs .

Therefore an individual votes for the Republican candidate if this condition holds, and

ϵijs < µjs − ηjs − δs (i.e., the individual is R-leaning). This gives us the joint probability of

voting for R:

Pr(Vote R) = Pr

(
ϵijs < m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs , ϵijs < µjs − ηjs − δs

)

Assume that not all R-leaning voters in a given county turn out. With thousands of

voters per county, this is a mild restriction, and it is verified post-estimation. Under this

assumption, the first condition is the more restrictive one, implying:

m(esR, esD)− cjs
p(κs)

− ζjs < 0

Therefore, using the fact that ϵijs ∼ N(0, 1) with CDF H(·), the Republican turnout rate

in county js is

σjsR = H

(
m(esR, esD) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
.

Democratic Turnout

For a D–leaning voter (∆ũijs < 0), turnout occurs if

p(κs) |∆uijs| > cjs .

Since

∆uijs = min{−m(esD, esR) + ∆ũijs + ζjs , 0} ≤ 0,
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we have

|∆uijs| = max{m(esD, esR)−∆ũijs − ζjs , 0} .

Because cjs/p(κs) > 0, the turnout condition is equivalent to

m(esD, esR)−∆ũijs − ζjs >
cjs
p(κs)

.

Substituting ∆ũijs = µjs − ηjs − δs − ϵijs :

p(κs) · [m(esD, esR)− µjs + ηjs + δs + ϵijs − ζjs ] > cjs .

Dividing through by p(κs) and rearranging:

ϵijs >
cjs
p(κs)

−m(esD, esR) + µjs − ηjs − δs + ζjs .

Again, assuming that not all D-leaning voters turn out, we can ignore the redundant

condition ϵijs > µjs − ηjs − δs. Because ϵijs ∼ N(0, 1) with CDF H(·), the probability that

this condition holds is

1−H

(
cjs
p(κs)

−m(esD, esR) + µjs − ηjs − δs + ζjs

)
.

Using 1−H(x) = H(−x), the Democratic turnout rate in county js is:

σjsD = H

(
m(esD, esR)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
.

B.3 Central Limit Theorem Validation

The candidate’s objective function relies on a normal approximation for the distribution of

total electoral votes. To validate this key simplifying assumption, I conduct a Monte Carlo

simulation for each election cycle. Using the estimated state-win probabilities (π̃s) from the
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structural model, I simulate the election outcome 1,000,000 times, generating an empirical

distribution of electoral votes for the Democratic candidate. Figure 11 compares the his-

tograms of these simulated outcomes against the theoretical normal distribution predicted

by the model. The close alignment for each year confirms that the normal approximation is

accurate and robust, providing a solid foundation for the analysis of the candidates’ equilib-

rium strategies.

B.4 Central Limit Theorem Validation

The candidate’s objective function (Equation 6) relies on a normal approximation for the

distribution of total electoral votes. To validate this key simplifying assumption, I conduct a

Monte Carlo simulation for each election cycle. Using the estimated state-win probabilities

(π̃s) from the structural model, I simulate the election outcome 100,000 times, generating

an empirical distribution of electoral votes for the Democratic candidate. Figure 11 com-

pares the histograms of these simulated outcomes against the theoretical normal distribution

predicted by the model. The close alignment for each year confirms that the normal approxi-

mation is accurate and robust, providing a solid foundation for the analysis of the candidates’

equilibrium strategies.

B.5 Accuracy of the County-Shock Approximation

This section quantifies the approximation error from omitting county-level shocks, ηjs and

ζjs , when computing the probability that the Democrat wins state s. I conduct Nsim = 250

Monte Carlo simulations. In each simulation, I draw Ntrial = 10,000 independent realizations

of the shocks to estimate both the full and approximate win probabilities.

Each simulation randomly draws a number of precincts for state s, campaign effort levels

for both parties, and the structural model parameters. Then, for each of the Ntrial draws, I

sample:

ηjs ∼ N (0, σ2
j ), ζjs ∼ N (0, σ2

j ), δs ∼ N (0, σ2
s),
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(a) 2008 Election (b) 2012 Election

(c) 2016 Election (d) 2020 Election

Figure 11: Validation of the Normal Approximation for the Electoral Vote Distribution.
Each panel shows the histogram of total electoral votes for the Democratic candidate from
1,000,000 simulations, using the estimated model parameters for that election year. The
solid red line is the corresponding Normal PDF, and the dashed black line indicates the
mean of the simulated distribution.

and compute two probabilities:

πfull
D = Pr

[
σsD(η, ζ, δ) > σsR(η, ζ, δ)

]
,

πapprox
D = Pr

[
σsD(0, 0, δ) > σsR(0, 0, δ)

]
,

where σsD(·) and σsR(·) denote the state-level turnout functions for Democrats and Repub-

licans, respectively, defined in Equations (4) and (5). Each probability is estimated as the

fraction of draws in which the Democrat’s simulated vote share exceeds the Republican’s.

Let ∆i = |πfull
D − πapprox

D | denote the absolute error in simulation i. I report the mean

and median absolute error across simulations, along with the standard deviation, minimum,

73



maximum, and percentiles of the absolute error distribution:

Mean(∆) =
1

Nsim

Nsim∑
i=1

∆i,

Median(∆) = median(∆1, . . . ,∆Nsim
).

The average absolute error is 0.0099, and the median is 0.0062. Thus, the full and

approximate probabilities differ by less than one percentage point in expectation, and by

just over a half of a percentage point in the median case.

B.6 Numerical Verification of the Uniqueness of δ̂s

This section verifies that the threshold value δ̂s defined in 9 is unique for a broad range of

parameter values and campaign effort profiles.12

Each simulation randomly draws a number of precincts for state s, campaign effort levels

for both parties, and the structural model parameters. For each of the Nsim = 1,000 Monte

Carlo simulations, I attempt to solve for (δ̂s, σs,D, σs,R) from 9, using Ntrial = 100 independent

random initial guesses. The root-finding routine is a damped Newton method implemented

in JAX, with the Jacobian computed via automatic differentiation.

Let δ(r,t) = (δ̂s, σs,D, σs,R)
(r,t) denote the solution in simulation r (out of Nsim) and trial t

(out of Ntrial). Trials that fail to converge or that return the degenerate boundary solution

(x, 0, 0) are discarded.

To assess dispersion in solutions across initializations, I compute the coordinate-wise

variance:

Vart(δ
(r,t)) =

(
Vart(δ̂

(r,t)
s ), Vart(σ

(r,t)
s,D ), Vart(σ

(r,t)
s,R )

)
,

12In principle, two distinct fixed points may exist: an interior solution and a degenerate boundary solution
of the form (x, 0, 0), where x satisfies 9 under σs,D = σs,R = 0. I exclude such degenerate solutions from the
analysis, as they do not correspond to meaningful equilibria.
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where Vart(·) denotes variance across trials t within a given simulation r. If multiple fixed

points existed, at least one coordinate of this vector would be strictly positive.

Across the 1,000 simulations, the largest coordinate-wise variance is given in Table 20.

Table 20: Dispersion of (δ̂s, σs,D, σs,R) across Random Initializations

δ̂s σs,D σs,R

max
r

Vart(·) 1.37×10−23 5.05×10−22 5.28×10−22

Notes: Values report the largest coordinate-wise variance observed over Nsim = 1,000 simulations and
Ntrial = 100 random starting points per simulation. The vanishing dispersion indicates convergence to a
single fixed point in every replication.

In every simulation, one of three outcomes occurred: (i) convergence to a unique interior

fixed point, (ii) convergence to the boundary solution (x, 0, 0), or (iii) failure to converge.

Since a valid interior solution was recovered in every parameter draw, and coordinate-wise

dispersion is vanishingly small, I conclude that the solution to 9 is globally unique whenever

an interior solution exists. Hence, the smoothed win probability, π̃s(es,D, es,R) = 1− F (δ̂s),

is well defined.
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C Data Appendix

C.1 Summary statistics

Table 21: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Battle-
ground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max

Male 3,174 0.501 0.026 0.374 0.488 0.496 0.505 0.790

Age 18–29 3,174 0.147 0.047 0.034 0.123 0.137 0.156 0.591

Age 65+ 3,174 0.162 0.044 0.028 0.134 0.159 0.185 0.514

White 3,174 0.789 0.176 0.086 0.680 0.852 0.932 0.998

Black 3,174 0.103 0.143 0.000 0.008 0.033 0.145 0.791

Native American 3,174 0.008 0.037 0.000 0.001 0.002 0.004 0.796

Asian 3,174 0.013 0.018 0.000 0.003 0.006 0.014 0.189

Hispanic 3,174 0.066 0.082 0.000 0.019 0.039 0.078 0.831

High School Only 3,174 0.352 0.077 0.055 0.304 0.354 0.405 0.556

Some College 3,174 0.297 0.048 0.114 0.265 0.300 0.330 0.455

College Only 3,174 0.142 0.059 0.030 0.098 0.130 0.170 0.480

College+ 3,174 0.077 0.046 0.007 0.047 0.064 0.094 0.437

Notes: All variables are expressed as population shares unless otherwise noted. Statis-
tics are based on county-level data from battleground states where effort is endoge-
nously allocated in equilibrium.
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Table 22: Summary Statistics for Covariates Used in the Partisan-Bias Parameter (Non-
Battleground States)

Variable Count Mean Std. Dev. Min 25% 50% 75% Max

Male 9,322 0.501 0.023 0.405 0.489 0.497 0.507 0.764

Age 18–29 9,322 0.147 0.041 0.031 0.125 0.141 0.159 0.554

Age 65+ 9,322 0.157 0.041 0.031 0.129 0.154 0.181 0.402

White 9,322 0.763 0.207 0.007 0.647 0.839 0.927 1.000

Black 9,322 0.084 0.144 0.000 0.005 0.018 0.085 0.874

Native American 9,322 0.021 0.081 0.000 0.001 0.003 0.007 0.910

Asian 9,322 0.013 0.030 0.000 0.002 0.005 0.011 0.522

Hispanic 9,322 0.097 0.148 0.000 0.020 0.038 0.098 0.991

High School Only 9,322 0.345 0.070 0.071 0.300 0.349 0.396 0.557

Some College 9,322 0.301 0.055 0.111 0.265 0.301 0.338 0.506

College Only 9,322 0.136 0.055 0.019 0.095 0.126 0.166 0.457

College+ 9,322 0.072 0.042 0.000 0.045 0.060 0.086 0.483

Notes: All variables are expressed as fractions of county population unless otherwise
noted. Observations cover counties in non-battleground states where campaign effort
is set to zero in equilibrium.
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Table 23: Summary Statistics for Cost of Voting Index by Urban/Rural Status and State
Type

Urban Counties Rural Counties

Statistic BG Non-BG BG Non-BG

Count 231 375 2880 8324

Mean 0.584 0.593 0.540 0.521

Std. Dev. 0.042 0.050 0.054 0.064

Min 0.471 0.491 0.334 0.000

25th Pctl 0.559 0.563 0.505 0.482

Median 0.590 0.587 0.536 0.519

75th Pctl 0.609 0.613 0.570 0.558

Max 0.760 0.976 0.887 1.000

Notes: The cost of voting index reflects percentile-
transformed congestion measures interacted with ur-
ban status. Urban counties are defined as those with
more than 350 residents per square kilometer. BG =
Battleground states (receive campaign effort); Non-
BG = Non-battleground states (no campaign effort).
All statistics are computed at the county-election
level. Values are at the county-election level.
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Table 24: Summary Statistics for Election-Law Indices by State Type

Voter ID Index Poll Hours Index Reg. Deadline Index

Statistic BG Non-BG BG Non-BG BG Non-BG

Count 40 160 40 160 40 160

Mean 0.300 0.273 0.377 0.380 0.519 0.563

Std. Dev. 0.345 0.317 0.142 0.207 0.463 0.406

Min 0.000 0.000 0.000 0.000 0.000 0.000

25th Pctl 0.000 0.000 0.333 0.333 0.000 0.000

Median 0.250 0.250 0.333 0.417 0.717 0.700

75th Pctl 0.500 0.500 0.500 0.500 0.967 0.967

Max 1.000 1.000 0.667 1.000 1.000 1.000

Notes: All indices are scaled to the unit interval. Higher values reflect
more restrictive voting policies. BG = Battleground states (receive
campaign effort); Non-BG = Non-battleground states (no campaign
effort). Values is at the state-year level.
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Table 25: Summary Statistics for Cost of Voting Covariates by State Type

Fraction Employed

Statistic BG Non-BG

Count 3,174 9,059

Mean 0.598 0.589

Std. Dev. 0.080 0.079

Min 0.136 0.000

25th Pctl 0.551 0.541

Median 0.606 0.597

75th Pctl 0.654 0.645

Max 0.855 0.831

Notes: Variable normalized to
the unit interval using empir-
ical percentiles. BG = Bat-
tleground states (receive cam-
paign effort); Non-BG = Non-
battleground states (no cam-
paign effort). Statistics are
based on county-election level
observations.

C.2 Polling-place congestion

I proxy queues at the polls with a crowding index that scales the voting-age population by

the number of in-person polling locations on Election Day. Let PP jt denote the number

of polling places and VAP jt the voting-age population in county j during election year t,

defined as the number of residents aged 18 and older. The congestion index is defined as

Congest jt = log

(
VAP jt

P̂P jt

)
,

where P̂P jt is the observed number of polling sites, or a predicted value when the data is

missing.

Approximately 19% of county-election observations are missing polling place data. I im-
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pute these missing values using a Gradient Boosting model trained on county-year covariates,

including a linear time trend, log voting-age population, demographic shares (age, gender,

race, education, employment), and state fixed effects. I first log-transform the number of

polling places to reduce skewness and ensure positive predictions. Model hyperparameters

are selected via five-fold cross-validated grid search over tree depth, regularization, learning

rate, and number of iterations. The model is trained on observed data from the 2008-2020

cycles. The final model achieves an out-of-sample R2 = 0.838.

C.3 Battleground state classification

To illustrate the sharp concentration of campaign resources, Figure 12 plots the marginal

increase in total advertising expenditures from adding each successive state to the battle-

ground set, ranked in descending order of combined Democratic and Republican spending

between August 1 and Election Day. Across all years, the first few states produce large

jumps in total spending, but the marginal gain falls rapidly. By the tenth state, additional

states contribute negligibly to overall expenditures, confirming that campaign activity is

overwhelmingly focused on a small set of states.
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Figure 12: Percent Increase from Adding States to the Battleground Classification

Notes: Each curve shows the percent increase in total advertising expenditures from adding

the next state to the battleground set, with states ranked in descending order of combined

Democratic and Republican television spending between August 1 and Election Day. Data

are from the Wesleyan Media Project for the 2008, 2012, 2016, and 2020 presidential elec-

tions.

Tables 26 and 27 summarize the distribution of observed television advertising expendi-

tures across states. In each election year, the top ten states account for more than 86% of

total spending, with this share rising to 92% in 2020. This sharp concentration motivates

the definition of battleground states used in the model.

Among the remaining 40 states, most receive negligible effort: the median share is effec-

tively zero in every year, and even the 75th percentile remains well below 1% in all cycles.

These patterns support the assumption that campaign effort is zero in non-battleground

states. While this imposes a discrete cutoff, it closely mirrors the observed data and sub-

stantially simplifies the model’s strategic problem without distorting the distribution of

effort.
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Table 26: Summary Statistics for Share of Total Effort in Non-Battleground States

Statistic 2008 2012 2016 2020

Mean 0.0045 0.0036 0.0029 0.0022
Std. Dev. 0.0110 0.0060 0.0053 0.0041
Min 0.0000 0.0000 0.0000 0.0000
25th pct. 0.0000 0.0000 0.0001 0.0000
Median 0.0000 0.0000 0.0002 0.0000
75th pct. 0.0010 0.0071 0.0030 0.0022
Max 0.0448 0.0196 0.0221 0.0163

Table 27: Share of Total Campaign Effort in Top 10 Battleground States

Year 2008 2012 2016 2020

Share 0.830 0.862 0.862 0.924

D Constructing Campaign Budget Shares and Total

Effort

D.1 Data Sources

Campaign–finance information comes from two datasets:

• Television advertising. Gross state-level outlays on presidential television ads are pro-

vided by the Wesleyan Media Project. These figures form the variable TVs,p discussed

in Section 4.4.

• Operating expenditures. Itemized operating-expenditure files released by the Federal

Election Commission (FEC) record every payment made by candidate committees,

including transaction date, amount, and free-text purpose description.

D.2 Filtering Operating Expenditures

The raw FEC files contain many transactions unrelated to voter mobilization. The following

rules are applied to retain only plausible mobilization outlays:
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1. General-election focus: Keep entries tagged as general or general–primary spending.

2. Candidate committees: Restrict to disbursements by the principal presidential com-

mittees of each major party.

3. Purpose description cleaning: Convert purpose strings to lower-case and harmonize

common variants (e.g. “on-line” → “online”).

4. Positive keyword match: Retain only transactions whose purpose description matches

one of the five predefined mobilization categories (media, online, print, telemarketing,

travel) based on regular expressions.

D.3 Classifying Mobilization Channels

Every retained transaction is assigned to one of five mutually exclusive mobilization cate-

gories using keyword patterns:

Category Matched keywords in purpose description

media media, tv, broadcast

online online, digital, facebook, google, youtube, twitter,

instagram, snapchat, web, internet

print print, post, mail, leaflet

telemarketing telemarketing, phone, text, sms

travel travel, event, rally, airfare, hotel

Ambiguous strings are resolved by a priority order media ≻ online ≻ print ≻ telemarketing ≻

travel, ensuring each transaction appears exactly once.
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E Identification Appendix

E.1 Identification via Monte Carlo Simulation

For the first validation exercise, I use the observed county- and state-level covariates from

the empirical application,
(
Xµ

js
, Xc

js

)
, to generate R = 100 synthetic elections. In each

replication, I draw a fresh vector of coefficients

(βµ, βc, βα1 , βα2 , βθ, βη, βδ),

compute equilibrium campaign efforts
(
e
(r)
s,D, e

(r)
s,R

)
, draw county- and state-level shocks, and

simulate turnout. I then re-estimate the model on each simulated dataset using the same

likelihood function and optimization routine as in the baseline estimation. To economize

on computation time, I use a reduced covariate set and fix γ = 2 and ψ = 0. Replications

that fail to converge or do not yield an equilibrium profile are excluded, as this issue does

not arise in the empirical application. Table 28 reports the results. Mean estimation errors

are centered at zero, indicating unbiasedness, and mean squared errors are small, indicating

high precision. This confirms that the structural parameters can be reliably recovered.
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Table 28: Parameter-recovery diagnostics across Monte-Carlo replications

Parameter MSE RMSE 25th pctl 75th pctl

Male (18–29) 1.89× 10−4 0.0138 −0.0078 0.0077

Female (65–79) 5.11× 10−4 0.0226 −0.0127 0.0147

White 2.12× 10−5 0.0046 −0.0029 0.0021

Black 2.92× 10−5 0.0054 −0.0041 0.0028

Hispanic 2.37× 10−5 0.0049 −0.0026 0.0028

High school only 1.04× 10−4 0.0102 −0.0052 0.0063

Some college 5.19× 10−5 0.0072 −0.0022 0.0060

College only 1.54× 10−4 0.0124 −0.0063 0.0078

Employed 8.91× 10−6 0.0030 −0.0013 0.0019

Voter ID Index 8.02× 10−7 0.00090 −0.00041 0.00049

Cost constant 3.54× 10−6 0.00188 −0.00103 0.00085

α1 2.59× 10−2 0.1609 −0.0265 0.0204

α2 2.46× 10−1 0.4956 −0.0581 0.0863

θ 5.06× 10−5 0.0071 −0.0040 0.0037

σc 5.92× 10−5 0.0077 0.00033 0.0080

σs 6.96× 10−3 0.0834 −0.0259 0.0623

Notes: MSE is the mean squared estimation error across Monte-Carlo replications, and RMSE is
its square root. The final two columns report the 25th and 75th percentiles of the estimation error
distribution for each parameter.

E.2 Identification on estimated coefficients

To assess local identification and numerical stability, I conduct a likelihood sensitivity anal-

ysis around the estimated parameter vector β̂. For each element βk, I generate a grid of

values in a neighborhood around β̂k, holding all other elements fixed. At each grid point, I

re-evaluate the full-sample log-likelihood function and its gradient.
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Formally, let β̂ ∈ RK denote the estimated parameter vector, and fix a grid of shocks

{δm}Mm=1. For each index k = 1, . . . , K, I define a perturbed parameter vector β(k,m) such

that

β
(k,m)
j =


β̂j + δm, if j = k,

β̂j, otherwise.

For each perturbed vector, I compute the log-likelihood ℓ(β(k,m)) and record the results.

This procedure yields a series of univariate likelihood profiles centered at β̂k, which allow

visual inspection of local curvature and potential flat regions in the likelihood surface. In

practice, I fix δm to be between -1 and 1, with a total of 20 grid points for each βk.

Figures 13 - 16 plot these likelihood profiles for each βk. The results show that the

likelihood is locally well-behaved and concave in the neighborhood of each coefficient. No

flat regions or multimodalities are detected, providing reassurance that the likelihood-based

estimator is locally identified and numerically stable. The only exception are the α1 and

the α2 parameters, which govern the perceived efficacy function. These parameters exhibit

a flatter likelihood profile. However, the likelihood still exhibits a midpoint around the true

value, suggesting that the model is still locally identified, albeit with less precision for these

parameters.

F Results Appendix

F.1 Calculating Elasticity of Turnout with Respect to Campaign

Effort

To quantify marginal responsiveness, I exploit the equilibrium conditions for county-level

turnout, defined in equations (4) and (5). In equilibrium, the following system must be

satisfied for each county js in state s and each party p ∈ {D,R}:
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Figure 13: Log-likelihood profiles around each βk (Graph 1)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 14: Log-likelihood profiles around each βk (Graph 2)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 15: Log-likelihood profiles around each βk (Graph 3)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Figure 16: Log-likelihood profiles around each βk (Graph 4)

Log-likelihood evaluated around each βk by applying additive shocks. Each panel holds all
other coefficients fixed and perturbs only the k-th element.
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Fjs,D(e,σ) ≡ σjs,D −H

(
m(es,D, es,R)− µjs −

cjs
p(κs)

+ ηjs + δs − ζjs

)
= 0, (22)

Fjs,R(e,σ) ≡ σjs,R −H

(
m(es,R, es,D) + µjs −

cjs
p(κs)

− ηjs − δs − ζjs

)
= 0, (23)

where

σs,p =
∑
js∈Js

wjsσjs,p, p(κs) := p(σs,D, σs,R).

Stacking equations (22) and (23) over all counties in a given state yields the vector-valued

function F (e,σ) ∈ R2|J |. The Jacobians ∂F/∂σ and ∂F/∂e enter the implicit function

theorem:

∂σ

∂e
= −

(
∂F

∂σ

)−1(
∂F

∂e

)
,

which is used to compute marginal turnout responses to changes in campaign effort.

From these derivatives, I compute county-level elasticities of the form

εjs,p,q =

(
∂σjs,p
∂es,q

)(
es,q
σjs,p

)
, p, q ∈ {D,R},

G Validating the Effects of Competitiveness

G.1 Balance Tests and Covariate Adjustment

Before estimating the main regression, I test whether counties on opposite sides of a state

border that share a media market differ systematically in observable characteristics. For

each of fourteen covariates Xcpt, I estimate a regression of the form:

Xcpt = β · HighCompcpt + δpt + εcpt (24)
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The indicator HighCompcpt equals one if county c lies on the more competitive side of its

border pair p in year t. All specifications include border-pair year fixed effects δpt. Standard

errors are clustered at the county level.

Across the covariates tested, which include demographics, educational attainment, in-

come, and employment status, only one shows statistically significant differences at conven-

tional levels, the share of Hispanic residents is higher in competitive counties (0.6 percentage

points, p < 0.01). While statistically significant, this difference is small in magnitude. As a

robustness check, I separately run the main regression including this covariate, along with

the full set of covariates used in the balance tests.

Results using pre-election polling averages instead of realized vote shares similarly demon-

strate no significant differences in covariates across border counties, with the exception of

fraction of residents employed.

Table 29: Covariate Balance Across Border Counties

Realized Vote Shares Pre-Election Polls

Covariate Estimate Std. Error Estimate Std. Error

Male 0.001 (0.001) 0.001 (0.001)
Age 18–29 −0.001 (0.001) −0.001 (0.001)
Age 65+ 0.001 (0.001) 0.002 (0.001)
White 0.002 (0.005) 0.006 (0.004)
Black −0.003 (0.003) −0.004 (0.003)
American Indian/Alaska Native −0.003 (0.003) −0.004 (0.003)
Asian 0.001 (0.001) 0.001 (0.001)
Hispanic 0.006∗∗ (0.002) 0.003 (0.002)
High School Only 0.001 (0.002) 0.004 (0.002)
Some College 0.002 (0.002) 0.001 (0.002)
College Only 0.001 (0.002) 0.000 (0.002)
College+ −0.001 (0.001) −0.001 (0.001)
Log Median Income 0.012 (0.008) 0.011 (0.007)
Employed 0.004 (0.002) 0.004∗ (0.002)

Observations 8,126 8,032

Notes: Each row reports the coefficient from a separate regression of the specified covariate on an
indicator for high competitiveness. All regressions include border-pair-by-year fixed effects. Co-
variates represent shares unless otherwise noted. Standard errors (in parentheses) are clustered by
county. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.
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G.2 Robustness to Field Offices and Events

A potential concern with the border discontinuity design is that shared media markets may

not fully equalize campaign exposure. In particular, ground operations such as field offices,

canvassing hubs, or campaign events may vary discontinuously at state lines. To evaluate

this concern, I construct a county-level dataset of field office and event activity from the 2008

to 2020 presidential elections, using disbursement records from the Federal Election Commis-

sion (FEC), available at https://www.fec.gov/data/browse-data/?tab=bulk-data. The

data include transaction-level operating expenditures by presidential candidates’ authorized

committees.

I restrict attention to disbursements classified as rent, lease, or event-related, and exclude

entries referring to equipment, services, or transportation using a set of keyword-based filters

(for example, “car rental” or “audio/video”). Each transaction is mapped to a county using

a ZIP-to-county crosswalk. If a ZIP code spans multiple counties, I conservatively assign the

spending to all relevant counties.

The final dataset defines a binary indicator for whether any field office or event activity

occurred in a given county-year. A balance test analogous to Appendix G.1 shows that more

competitive counties are approximately five percentage points more likely to exhibit such

activity, a difference that is statistically significant at the p < 0.001 level.

To assess the impact of this potential confound, I re-estimate the main regression af-

ter excluding any county pair where either county recorded ground activity. This removes

approximately 1,000 county-border pair-year observations. As shown in Table 30, the esti-

mated effect of competitiveness on turnout remains highly stable, with coefficients ranging

from 0.053 to 0.067 depending on the specification. These results suggest that the main

estimates are not driven by differences in ground operations across state lines.
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Table 30: Effect of Competitiveness on Turnout (No-Office Sample Only)

(1) (2) (3)

Competitiveness
Estimate 0.053∗∗∗ 0.057∗∗∗ 0.067∗∗∗

(Std. Error) (0.011) (0.011) (0.010)

Controls No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 7,056 7,056 7,056

R2
within 0.003 0.152 0.531

Notes: Each column reports regression estimates of the effect of state-level competi-

tiveness on turnout, restricted to counties with no observed field offices or campaign

events. All models include border-pair-by-year fixed effects and state fixed effects.

Columns (2) and (3) sequentially add controls for covariates flagged as imbalanced

in the balance tests and the full set of demographic and economic covariates. Stan-

dard errors (in parentheses) are clustered at the county-pair level. Significance levels:

∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.

G.3 Digital Campaign Spending and Turnout

To further validate the model’s predictions, I examine the relationship between state-level

competitiveness, digital campaign spending, and turnout. I construct a state-level dataset

of digital advertising expenditures for the 2020 election using records from the Center for

Responsive Politics (OpenSecrets.org). I focus on the four largest general-election commit-

tees: Trump Make America Great Again Committee, Donald J. Trump for President, Biden

for President, and the Biden Victory Fund. The first two are Republican committees, while

the latter two are Democratic. I extract state-level totals of digital advertising from their

public dashboards, merge the totals to obtain party-level spending, and compute per-capita

values by dividing state totals by the voting-age population.
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I then re-estimate the border discontinuity design described in equation 18, including per-

capita digital spending as an additional regressor. The results, reported in Table 31, show

that competitiveness remains a positive and statistically significant determinant of turnout

even after controlling for digital spending.

Because digital advertising was minimal in earlier elections, I replicate the analysis using

data from the 2008 and 2012 presidential contests. This limits the possibility that the

estimated effect of competitiveness is driven by variation in digital spending. The results,

reported in Table 32, yield coefficients nearly identical to the baseline estimates.

Table 31: Effect of Competitiveness and Digital Spending on Turnout

(1) (2) (3) (4)

Competitiveness
Estimate 0.153∗∗∗ 0.141∗∗∗ 0.171∗∗∗ 0.133∗∗∗

(Std. Error) (0.013) (0.019) (0.018) (0.014)

Digital Spending (per capita)
Estimate 0.006 −0.002 0.003

(Std. Error) (0.006) (0.005) (0.004)

Controls No No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes Yes

State FE No No No No

Observations 2,044 2,044 2,044 2,044

R2
within 0.111 0.112 0.229 0.581

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout, with

and without controls for per-capita digital advertising spending. All specifications include border-pair-by-year

and state fixed effects. Columns (3) and (4) add covariates flagged as imbalanced in the balance tests and the

full set of demographic and economic controls, respectively. Standard errors (in parentheses) are clustered at the

county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.
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Table 32: Effect of Competitiveness on Turnout (2008–2012 Elections)

(1) (2) (3)

Competitiveness
Estimate 0.058∗∗∗ 0.061∗∗∗ 0.063∗∗∗

(Std. Error) (0.009) (0.009) (0.010)

Controls No Controls Balance Sig. Controls All Controls

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 4,088 4,088 4,088

R2
within 0.002 0.144 0.536

Notes: Each column reports regression estimates of the effect of state-level competitiveness on turnout

in the 2008 and 2012 elections. All specifications include border-pair-by-year and state fixed effects.

Column (2) adds Hispanic population share, the only covariate flagged as imbalanced in balance

tests. Column (3) includes the full set of demographic and economic controls. Standard errors

(in parentheses) are clustered at the county-pair level. Significance levels: ∗ p<0.05, ∗∗ p<0.01,

∗∗∗ p<0.001.

G.4 Validation with Pre-Election Polling

To match with the model as closely as possible, the main regression uses realized vote shares

to measure competitiveness. However, this approach may be subject to endogeneity concerns,

as the same factors that drive turnout may also influence vote shares. To address this, I

conduct a robustness check using pre-election polling data to measure competitiveness. I

obtain state-level pre-election polling data from the Fivethirtyeight GitHub repository, which

compiles polling averages from various sources and adjusts them for pollster quality, sample

type, and recency. They give a predicted two-party vote share for each state in each election

year over the election cycle throughout the 2008–2020 period. Polling data are unavailable

for Delaware, Mississippi, and Wyoming in 2012. I use the final pre-election polling average

available before Election Day for each state-year.

Similarly to the main regression, I define competitiveness as the ratio of the expected

Democratic vote share to the expected Republican vote share in each state-year. The results
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using pre-election polling data are reported in Table 33. While the overall effect is smaller, the

estimated effect of competitiveness on turnout remains positive and statistically significant,

with coefficients ranging from 0.027 to 0.030 depending on the specification. This translates

to an increase in turnout of approximately 0.88 to 0.98 percentage points when moving from

the non-battleground state mean (κst = 0.677) to full competitiveness (κst = 1), as shown

in Table 34.

Although these estimates are lower than those from the main specification (1.72 to 2.17

percentage points) and the model’s predicted effect (1.81 points), they remain directionally

consistent and statistically robust. The smaller magnitudes may reflect greater noise in

polling-based measures of competitiveness, which are based on expectations rather than

realized outcomes.

Table 33: Effect of Competitiveness on Turnout (Pre-Election Polls)

(1) (2) (3)

Competitiveness
Estimate 0.029∗∗ 0.027∗∗ 0.030∗∗∗

(Std. Error) (0.010) (0.010) (0.009)

Controls No Balance-Test Sig. All

Border Pair by Year FE Yes Yes Yes

State FE Yes Yes Yes

Observations 8,032 8,032 8,032

R2
within 0.001 0.007 0.540

Notes: Each column reports regression estimates of the effect of state-level compet-

itiveness (measured using pre-election polling averages) on turnout, at the county-

border pair-year level. All models include border-pair-by-year fixed effects and state

fixed effects. Columns (2) and (3) sequentially add controls for covariates flagged

as imbalanced in the balance tests and the full set of demographic and economic

covariates. Standard errors (in parentheses) are clustered at the county-pair level.

Significance levels: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001.
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Table 34: Estimated Turnout Effect of Moving from Average
Non-Battleground Competitiveness to Full Competitiveness (Pre-
Election Polls)

No Controls Balance Sig. Controls All Controls

Effect (pp) 0.93 0.88 0.98

Notes: Each entry reports the estimated increase in turnout (in percent-

age points) associated with raising competitiveness from the non-battleground

state mean (κst = 0.677) to full competitiveness (κst = 1), based on the pre-

election polling estimates in Table 33.

G.5 Replicating Spenkuch and Toniatti (2018)

I replicate the design of Spenkuch and Toniatti (2018), which compares counties on opposite

sides of media market boundaries but within the same state. This holds competitiveness

fixed while allowing campaign exposure to vary.

Consistent with their findings, I find that per-capita campaign spending has no effect on

turnout. However, when I regress the difference in per-capita spending between Democratic

and Republican campaigns on the corresponding difference in vote shares, the estimated

effect is large, positive, and statistically significant.

This closely mirrors the core result of Spenkuch and Toniatti (2018), who find that

campaign advertising persuades but does not mobilize. The fact that I recover similar

estimates using their design suggests that the strong turnout effects in my main analysis

reflect differences in research design rather than differences in data.

H Marginal Cost Derivation

Total votes for party q in state s are given by:

Vs,q =
∑
js∈s

VAPjs · σjs,q,
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Table 35: Reduced-Form Effects of Campaign Spending

Panel A: Turnout

(1) (2) (3)

Total Spending
Estimate 0.001 0.000 0.000
(Std. Error) (0.001) (0.001) (0.000)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R2

within 0.000 0.080 0.594

Panel B: Vote Share Difference

(1) (2) (3)

Spending Difference
Estimate 0.018∗∗∗ 0.015∗∗∗ 0.010∗∗∗

(Std. Error) (0.005) (0.004) (0.003)

Controls No Balance-Test Sig. All
Border Pair by Year FE Yes Yes Yes
Observations 17,332 17,332 17,332
R2

within 0.004 0.181 0.645

Notes: Panel A regresses county-level turnout on total per-capita campaign spending.
Panel B regresses the difference in Democratic and Republican vote shares on the difference
in per-capita campaign spending. All models include either border-pair or border-pair-by-
year fixed effects. Columns (2) include only covariates flagged as imbalanced in balance
tests. Columns (3) include the full set of demographic and economic controls. Standard
errors (in parentheses) are clustered by county. Significance levels: ∗ p<0.05, ∗∗ p<0.01,
∗∗∗ p<0.001.

where VAPjs is the voting-age population in county js, and σjs,q is the party-specific turnout

share. Differentiating yields:

∂Vs,q
∂es,q

=
∑
js∈s

VAPjs ·
∂σjs,q
∂es,q

,

and thus:

MCVs,q =

(∑
js∈s

VAPjs ·
∂σjs,q
∂es,q

)−1

.
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